Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joelle Dupont is active.

Publication


Featured researches published by Joelle Dupont.


Hormone Research in Paediatrics | 2001

Insulin and Insulin-Like Growth Factor I Receptors: Similarities and Differences in Signal Transduction

Joelle Dupont; Derek LeRoith

The insulin receptor (IR) and the insulin-like growth factor I receptor (IGF-IR) belong to the same subfamily of receptor tyrosine kinases with two extracellular α-subunits and two transmembrane β-subunits. They share a high similarity of structure and intracellular signalling events. However, the IR and the IGF-IR mediate different effects on metabolism, cell proliferation, apoptosis and differentiation. Although some of the variation can be attributed to a different tissue distribution or subcellular localization, it can also be explained by structural differences in the β-subunit, which may result in activation of specific substrates and signal pathways.


Journal of Biological Chemistry | 2000

The Potentiation of Estrogen on Insulin-like Growth Factor I Action in MCF-7 Human Breast Cancer Cells Includes Cell Cycle Components

Joelle Dupont; Michael Karas; Derek LeRoith

To gain insight into the mechanisms involved in the cross-talk between IGF-1 receptor (IGF-1R) and estrogen receptor signaling pathways, we used MCF-7-derived cells (SX13), which exhibit a 50% reduction in IGF-1R expression. Growth of NEO cells (control MCF-7 cells) was stimulated by both IGF-1 and estradiol (E2), and the addition of both mitogens resulted in a synergistic response. Estrogen enhanced IGF-1R signaling in NEO cells, but this effect was markedly diminished in SX13 cells. Estrogen was also able to potentiate the IGF-1 effect on the expression of cyclin D1 and cyclin E and on the phosphorylation of retinoblastoma protein in control but not in SX13 cells. IGF-1 increased the protein level of p21 and the luciferase activity of the p21 promoter, whereas it only reduced the protein level of p27 without affecting p27 promoter activity. Estrogen did not affect the p21 inhibitor, but it decreased the protein level of p27 and the p27 promoter luciferase activity. These effects of both mitogens were also observed at the level of association of both cyclin-dependent kinase inhibitors with CDK2 suggesting that IGF-1 and E2 affect the activity of both p21 and p27. Taken together, these data suggest that in MCF-7 cells, estrogen potentiates the IGF-1 effect on IGF-1R signaling as well as on the cell cycle components. Moreover, IGF-1 and E2 regulate the expression of p21 and p27 and their association with CDK2 differently.


Journal of Clinical Pathology-molecular Pathology | 2001

Insulin-like growth factor 1 and oestradiol promote cell proliferation of MCF-7 breast cancer cells: new insights into their synergistic effects

Joelle Dupont; D Le Roith

In MCF-7 breast cancer cells, the insulin-like growth factor 1 receptor (IGF-1R) and the oestrogen receptor (ER) are coexpressed and the two signalling systems are engaged in a crosstalk that results in synergistic growth. However, coupling between the signalling cascades is poorly understood. Oestradiol enhances IGF-1R signalling by inducing the expression of insulin receptor substrate 1 (IRS-1), a substrate of the IGF-1R. Oestradiol induced expression of IRS-1 results in enhanced tyrosine phosphorylation of IRS-1 after IGF-1 stimulation, followed by enhanced mitogen activated protein kinase, phosphoinositide 3′ kinase, and Akt activation. Oestradiol can also potentiate the effect of IGF-1 on the expression of cyclin D1 and cyclin E, and on the phosphorylation of the retinoblastoma protein (RB). These effects are greatly diminished in SX13 cells, which exhibit a 50% reduction in IGF-1R expression but few functional IGF-1Rs at the surface. Oestradiol and IGF-1 regulate the expression of two cyclin dependent kinase inhibitors, p21 and p27, differently. Whereas IGF-1 increases p21 expression and reduces p27 expression, oestradiol has no effect on p21. In summary, in MCF-7 cells, oestrogen potentiates the effect of IGF-1 on IGF-1R signalling and its effects on certain cell cycle components.


Oncogene | 2004

PTEN inhibits cell proliferation and induces apoptosis by downregulating cell surface IGF-IR expression in prostate cancer cells.

Hong Zhao; Joelle Dupont; Shoshana Yakar; Michael Karas; Derek LeRoith

PTEN is a tumor suppressor gene that is frequently mutated in human tumors. It functions primarily as a lipid phosphatase and plays a key role in the regulation of phosphatidylinositol-3′-kinase. PTEN appears to play a crucial role in modulating apoptosis by reducing the levels of PtdIns(3,4,5)P3, a phospholipid that activates AKT, a central regulator of apoptosis. To understand the role of PTEN in regulating cell proliferation and apoptosis, we stably overexpressed PTEN in PC3 cells, which are prostate cancer cells that lack PTEN. Overexpression of PTEN in two different clones inhibited cell proliferation and increased serum starvation-induced apoptosis, as compared to control cells. Interestingly, PTEN overexpression resulted in a 44–60% reduction in total insulin-like growth factor-I receptor (IGF-IR) protein levels and a 49–64% reduction in cell surface IGF-IR expression. [35S]methionine pulse experiments in PC3 cells overexpressing PTEN demonstrated that these cells synthesize significantly lower levels of the IGF-IR precursor, whereas PTEN overexpression had no effect on IGF-IR degradation. Taken together, our results show that PTEN can regulate cell proliferation and apoptosis through inhibition of IGF-IR synthesis. These results have important implications for understanding the roles of PTEN and the IGF-IR in prostate cancer cell tumorigenesis.


Journal of Clinical Investigation | 2002

Muscle-specific inactivation of the IGF-I receptor induces compensatory hyperplasia in skeletal muscle.

Ana M. Fernandez; Joelle Dupont; Roger P. Farrar; Sukho Lee; Bethel Stannard; Derek Le Roith

During the development of skeletal muscle, myoblasts withdraw from the cell cycle and differentiate into myotubes. The insulin-like growth factors IGF-I and IGF-II, through their cognate tyrosine kinase receptor (IGF-I receptor), are known to play a role in this process. After withdrawal of myoblasts from the cell cycle, IGF-I promotes muscle differentiation by inducing the expression or activity of myogenic regulatory factors (MyoD, myogenin) and effectors (p21). However, little is known about the intracellular mechanisms by which the IGF-I system regulates these factors during the process of myogenesis. Here we show that MKR mice, which express a dominant negative IGF-I receptor specifically in skeletal muscle, have marked muscle hypoplasia from birth to 3 weeks of age. This hypoplasia occurs concomitantly with a decrease in ERK immunoreactivity levels and decreases in MyoD and myogenin expression. BrdU immunocytochemistry showed a compensatory hyperplasia as MKR mice grew to adulthood. Interestingly, hyperplasia occurred concomitantly with an increase in p38, MyoD, myogenin, and p21 immunoreactivity levels, as well as a decrease in Twist levels. These findings suggest that regulation of these cellular elements by IGF-I may play a role in the development and differentiation of skeletal muscle in vivo.


Journal of Clinical Investigation | 2002

PTEN overexpression suppresses proliferation and differentiation and enhances apoptosis of the mouse mammary epithelium

Joelle Dupont; Jean-Pierre Renou; Moshe Shani; Lothar Hennighausen; Derek LeRoith

The phosphatase PTEN regulates growth, adhesion, and apoptosis, among many other cell processes. To investigate its role during mouse mammary gland development, we generated MK-PTEN, a transgenic mouse model in which human PTEN is overexpressed in ductal and alveolar mammary epithelium during puberty, pregnancy, lactation, and involution. No obvious phenotype was observed in mammary tissue of pubescent virgin mice. However, MK-PTEN females could not lactate normally, and approximately 30% of pups died, with survivors exhibiting growth retardation. Transgenic offspring nursed by wild-type foster mothers, conversely, developed normally. This phenotype is consistent with a reduced number of alveolar epithelial cells due to a decrease in cell proliferation and an increase in apoptosis. Using mammary-enriched cDNA microarrays, we identified several genes that were preferentially expressed in MK-PTEN mammary tissue, including the IGF-binding protein-5 (Igfbp5) gene, and others whose expression was reduced, including the genes for c-Jun amino-terminal kinase. Secretory epithelial cell differentiation was impaired, as measured by the expression of specific milk protein genes. MK-PTEN mice also exhibited a 50% decrease in the phosphorylation state of Akt. Taken together, these results suggest that PTEN controls mammary gland development and, consequently, lactation.


Journal of Biological Chemistry | 2003

The Cyclin-dependent Kinase Inhibitor p21CIP/WAF Is a Positive Regulator of Insulin-like Growth Factor I-induced Cell Proliferation in MCF-7 Human Breast Cancer Cells

Joelle Dupont; Michael Karas; Derek LeRoith

To study the role of IGF-I receptor signaling on cell cycle events we utilized MCF-7 breast cancer cells. IGF-I at physiological concentrations increased the level of p21CIP/WAF mRNA after4has well as protein after8hby 10- and 6-fold, respectively, in MCF-7 cells. This IGF-1 effect was reduced by 50% in MCF-7-derived cells (SX13), which exhibit a 50% reduction in IGF-1R expression, demonstrating that IGF-1 receptor activation was involved in this process. Preincubation with the ERK1/2 inhibitor U0126 significantly reduced the IGF-1 effect on the amount of p21CIP/WAF protein in MCF-7 cells. These results were confirmed by the expression of a dominant negative construct for MEK-1 suggesting that the increase of the abundance of p21CIP/WAF in response to IGF-1 occurs via the ERK1/2 mitogen-activated protein kinase pathway. Using an antisense strategy, we demonstrated that abolition of p21CIP/WAF expression decreased by 2-fold the IGF-1 effect on cell proliferation in MCF-7. This latter result is explained by a delay in G1 to S cell cycle progression due partly to a reduction in the activation of some components of cell cycle including the induction of cyclin D1 expression in response to IGF-1. MCF-7 cells transiently overexpressing p21 showed increased basal and IGF-I-induced thymidine incorporation. Taken together, these results define p21CIP/WAF as a positive regulator in the cell proliferation induced by IGF-1 in MCF-7 cells.


Cancer Research | 2005

Overexpression of the tumor suppressor gene phosphatase and tensin homologue partially inhibits Wnt-1-induced mammary tumorigenesis

Hong Zhao; Yongzhi Cui; Joelle Dupont; Hui Sun; Lothar Hennighausen; Shoshana Yakar

The tumor suppressor phosphatase and tensin homologue (PTEN) is involved in cell proliferation, adhesion, and apoptosis. PTEN overexpression in mammary epithelium leads to reduced cell number and impaired differentiation and secretion. In contrast, overexpression of the proto-oncogene Wnt-1 in mammary epithelium leads to mammary hyperplasia and subsequently focal mammary tumors. To explore the possibility that PTEN intersects with Wnt-induced tumorigenesis, mice that ectopically express PTEN and Wnt-1 in mammary epithelium were generated. PTEN overexpression resulted in an 11% reduction of Wnt-1-induced tumors within a 12-month period and the onset of tumors was delayed from an average of 5.9 to 7.7 months. The rate of tumor growth, measured from 0.5 cm diameter until the tumors reached 1.0 cm diameter, was increased from 8.4 days in Wnt-1 mice to 17.7 days in Wnt-1 mice overexpressing PTEN. Here we show for the first time in vivo that overexpression of PTEN in the Wnt-1 transgenic mice resulted in a marked decrease in the insulin-like growth factor (IGF)-I receptor levels leading to a reduced IGF-I-mediated mitogenesis. Moreover, the percentage of BrdUrd-positive epithelial nuclei was decreased by 48%. beta-Catenin immunoreactivity was significantly decreased and the percentage of signal transducer and activator of transcription 5a (stat5a)-positive mammary epithelial cells was increased by 2-fold in Wnt-1 mice overexpressing PTEN. The present study shows that PTEN can partially inhibit the Wnt-1-induced mammary tumorigenesis in early neoplastic stages by blocking the AKT pathway and by reducing the IGF-I receptor levels in mammary gland. This study identifies the PTEN as a therapeutic target for the treatment of mammary cancer and presumably other types of cancer.


Journal of Biological Chemistry | 2003

The cyclin dependent kinase inhibitor p21CIP/WAF is a positive regulator of IGF-1-induced cell proliferation in MCF-7 human breast cancer cells

Joelle Dupont; Michael Karas; Derek LeRoith

To study the role of IGF-I receptor signaling on cell cycle events we utilized MCF-7 breast cancer cells. IGF-I at physiological concentrations increased the level of p21CIP/WAF mRNA after4has well as protein after8hby 10- and 6-fold, respectively, in MCF-7 cells. This IGF-1 effect was reduced by 50% in MCF-7-derived cells (SX13), which exhibit a 50% reduction in IGF-1R expression, demonstrating that IGF-1 receptor activation was involved in this process. Preincubation with the ERK1/2 inhibitor U0126 significantly reduced the IGF-1 effect on the amount of p21CIP/WAF protein in MCF-7 cells. These results were confirmed by the expression of a dominant negative construct for MEK-1 suggesting that the increase of the abundance of p21CIP/WAF in response to IGF-1 occurs via the ERK1/2 mitogen-activated protein kinase pathway. Using an antisense strategy, we demonstrated that abolition of p21CIP/WAF expression decreased by 2-fold the IGF-1 effect on cell proliferation in MCF-7. This latter result is explained by a delay in G1 to S cell cycle progression due partly to a reduction in the activation of some components of cell cycle including the induction of cyclin D1 expression in response to IGF-1. MCF-7 cells transiently overexpressing p21 showed increased basal and IGF-I-induced thymidine incorporation. Taken together, these results define p21CIP/WAF as a positive regulator in the cell proliferation induced by IGF-1 in MCF-7 cells.


Genes & Development | 2001

Functional inactivation of the IGF-I and insulin receptors in skeletal muscle causes type 2 diabetes

Ana M. Fernandez; Jason K. Kim; Shoshana Yakar; Joelle Dupont; Catalina Hernández-Sánchez; Arthur L. Castle; Jonathan Filmore; Gerald I. Shulman; Derek Le Roith

Collaboration


Dive into the Joelle Dupont's collaboration.

Top Co-Authors

Avatar

Derek LeRoith

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Shoshana Yakar

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Ana M. Fernandez

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Derek Le Roith

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Hong Zhao

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Lee J. Helman

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Michael Karas

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Michael Karas

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Lothar Hennighausen

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge