Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stanley J. Schmidt is active.

Publication


Featured researches published by Stanley J. Schmidt.


ACS Medicinal Chemistry Letters | 2010

Discovery of GSK2126458, a Highly Potent Inhibitor of PI3K and the Mammalian Target of Rapamycin.

Steven David Knight; Nicholas D. Adams; Joelle L. Burgess; Amita M. Chaudhari; Michael G. Darcy; Carla A. Donatelli; Juan I. Luengo; Ken A. Newlander; Cynthia A. Parrish; Lance H. Ridgers; Martha A. Sarpong; Stanley J. Schmidt; Glenn S. Van Aller; Jeffrey D. Carson; Melody Diamond; Patricia A. Elkins; Christine M. Gardiner; Eric Garver; Seth Gilbert; Richard R. Gontarek; Jeffrey R. Jackson; Kevin L. Kershner; Lusong Luo; Kaushik Raha; Christian S. Sherk; Chiu-Mei Sung; David Sutton; Peter J. Tummino; Ronald Wegrzyn; Kurt R. Auger

Phosphoinositide 3-kinase α (PI3Kα) is a critical regulator of cell growth and transformation, and its signaling pathway is the most commonly mutated pathway in human cancers. The mammalian target of rapamycin (mTOR), a class IV PI3K protein kinase, is also a central regulator of cell growth, and mTOR inhibitors are believed to augment the antiproliferative efficacy of PI3K/AKT pathway inhibition. 2,4-Difluoro-N-{2-(methyloxy)-5-[4-(4-pyridazinyl)-6-quinolinyl]-3-pyridinyl}benzenesulfonamide (GSK2126458, 1) has been identified as a highly potent, orally bioavailable inhibitor of PI3Kα and mTOR with in vivo activity in both pharmacodynamic and tumor growth efficacy models. Compound 1 is currently being evaluated in human clinical trials for the treatment of cancer.


Nature Chemical Biology | 2015

New IDH1 mutant inhibitors for treatment of acute myeloid leukemia

Ujunwa C. Okoye-Okafor; Boris Bartholdy; Jessy Cartier; Enoch Gao; Beth Pietrak; Alan R. Rendina; Cynthia M. Rominger; Chad Quinn; Angela Smallwood; Kenneth Wiggall; Alexander Joseph Reif; Stanley J. Schmidt; Hongwei Qi; Huizhen Zhao; Gerard Joberty; Maria Faelth-Savitski; Marcus Bantscheff; Gerard Drewes; Chaya Duraiswami; Pat Brady; Arthur Groy; Swathi Rao Narayanagari; Iléana Antony-Debré; Kelly Mitchell; Heng Rui Wang; Yun Ruei Kao; Maximilian Christopeit; Luis Carvajal; Laura Barreyro; Elisabeth Paietta

Neomorphic mutations in isocitrate dehydrogenase 1 (IDH1) are driver mutations in acute myeloid leukemia (AML) and other cancers. We report the development of new allosteric inhibitors of mutant IDH1. Crystallographic and biochemical results demonstrated that compounds of this chemical series bind to an allosteric site and lock the enzyme in a catalytically inactive conformation, thereby enabling inhibition of different clinically relevant IDH1 mutants. Treatment of IDH1 mutant primary AML cells uniformly led to a decrease in intracellular 2-HG, abrogation of the myeloid differentiation block and induction of granulocytic differentiation at the level of leukemic blasts and more immature stem-like cells, in vitro and in vivo. Molecularly, treatment with the inhibitors led to a reversal of the DNA cytosine hypermethylation patterns caused by mutant IDH1 in the cells of individuals with AML. Our study provides proof of concept for the molecular and biological activity of novel allosteric inhibitors for targeting different mutant forms of IDH1 in leukemia.


Journal of Medicinal Chemistry | 2010

Discovery of GSK1070916, a Potent and Selective Inhibitor of Aurora B/C Kinase

Nicholas D. Adams; Jerry L. Adams; Joelle L. Burgess; Amita M. Chaudhari; Robert A. Copeland; Carla A. Donatelli; David H. Drewry; Kelly E. Fisher; Toshihiro Hamajima; Mary Ann Hardwicke; William F. Huffman; Kristin K. Koretke-Brown; Zhihong V. Lai; Octerloney B. McDonald; Hiroko Nakamura; Ken A. Newlander; Catherine A. Oleykowski; Cynthia A. Parrish; Denis R. Patrick; Ramona Plant; Martha A. Sarpong; Kosuke Sasaki; Stanley J. Schmidt; Domingos J. Silva; David Sutton; Jun Tang; Christine Thompson; Peter J. Tummino; Jamin C. Wang; Hong Xiang

The Aurora kinases play critical roles in the regulation of mitosis and are frequently overexpressed or amplified in human tumors. Selective inhibitors may provide a new therapy for the treatment of tumors with Aurora kinase amplification. Herein we describe our lead optimization efforts within a 7-azaindole-based series culminating in the identification of GSK1070916 (17k). Key to the advancement of the series was the introduction of a 2-aryl group containing a basic amine onto the azaindole leading to significantly improved cellular activity. Compound 17k is a potent and selective ATP-competitive inhibitor of Aurora B and C with K(i)* values of 0.38 +/- 0.29 and 1.5 +/- 0.4 nM, respectively, and is >250-fold selective over Aurora A. Biochemical characterization revealed that compound 17k has an extremely slow dissociation half-life from Aurora B (>480 min), distinguishing it from clinical compounds 1 and 2. In vitro treatment of A549 human lung cancer cells with compound 17k results in a potent antiproliferative effect (EC(50) = 7 nM). Intraperitoneal administration of 17k in mice bearing human tumor xenografts leads to inhibition of histone H3 phosphorylation at serine 10 in human colon cancer (Colo205) and tumor regression in human leukemia (HL-60). Compound 17k is being progressed to human clinical trials.


British Journal of Pharmacology | 2005

Nonpeptidic urotensin-II receptor antagonists I: in vitro pharmacological characterization of SB-706375

Stephen A. Douglas; David J. Behm; Nambi Aiyar; Diane Naselsky; Jyoti Disa; David P. Brooks; Eliot H. Ohlstein; John G Gleason; Henry M. Sarau; James J. Foley; Peter T. Buckley; Dulcie B. Schmidt; William E. Wixted; Katherine L. Widdowson; Graham J. Riley; Jian Jin; Timothy F. Gallagher; Stanley J. Schmidt; Lance H. Ridgers; Lisa T. Christmann; Richard M. Keenan; Steven D. Knight; Dashyant Dhanak

1 SB‐706375 potently inhibited [125I]hU‐II binding to both mammalian recombinant and ‘native’ UT receptors (Ki 4.7±1.5 to 20.7±3.6 nM at rodent, feline and primate recombinant UT receptors and Ki 5.4±0.4 nM at the endogenous UT receptor in SJRH30 cells). 2 Prior exposure to SB‐706375 (1 μM, 30 min) did not alter [125I]hU‐II binding affinity or density in recombinant cells (KD 3.1±0.4 vs 5.8±0.9 nM and Bmax 3.1±1.0 vs 2.8±0.8 pmol mg−1) consistent with a reversible mode of action. 3 The novel, nonpeptidic radioligand [3H]SB‐657510, a close analogue of SB‐706375, bound to the monkey UT receptor (KD 2.6±0.4 nM, Bmax 0.86±0.12 pmol mg−1) in a manner that was inhibited by both U‐II isopeptides and SB‐706375 (Ki 4.6±1.4 to 17.6±5.4 nM) consistent with the sulphonamides and native U‐II ligands sharing a common UT receptor binding domain. 4 SB‐706375 was a potent, competitive hU‐II antagonist across species with pKb 7.29–8.00 in HEK293‐UT receptor cells (inhibition of [Ca2+]i‐mobilization) and pKb 7.47 in rat isolated aorta (inhibition of contraction). SB‐706375 also reversed tone established in the rat aorta by prior exposure to hU‐II (Kapp∼20 nM). 5 SB‐706375 was a selective U‐II antagonist with 100‐fold selectivity for the human UT receptor compared to 86 distinct receptors, ion channels, enzymes, transporters and nuclear hormones (Ki/IC50>1 μM). Accordingly, the contractile responses induced in isolated aortae by KCl, phenylephrine, angiotensin II and endothelin‐1 were unaltered by SB‐706375 (1 μM). 6 In summary, SB‐706375 is a high‐affinity, surmountable, reversible and selective nonpeptide UT receptor antagonist with cross‐species activity that will assist in delineating the pathophysiological actions of U‐II in mammals.


Bioorganic & Medicinal Chemistry Letters | 1995

Structural and stereochemical requirements of time-dependent inactivators of the interleukin-1β converting enzyme

C. V. C. Prasad; Catherine Prouty; Denton Hoyer; Tina Morgan Ross; Joseph M. Salvino; Mohamad M. A. Awad; Todd L. Graybill; Stanley J. Schmidt; I. Kelly Osifo; Roland E. Dolle; Carla T. Helaszek; Robert E. Miller; Mark A. Ator

Abstract Structural and stereochemical requirements of substrate based time-dependent inactivators of interleukin-1β converting enzyme were investigated. Hydrophobic amino acids with L-stereochemistry are preferred at the P 2 and P 3 positions. It appears that both D-and L-Asp are accepted by the enzyme at the P I position.


Bioorganic & Medicinal Chemistry Letters | 1995

Characterization of a continuous fluorogenic assay for calpain I. Kinetic evaluation of peptide aldehydes, halomethyl ketones and (acyloxy)methyl ketones as inhibitors of the enzyme

Alex L. Harris; Jill S. Gregory; Alan L. Maycock; Todd L. Graybill; I. Kelly Osifo; Stanley J. Schmidt; Roland E. Dolle

Z-Leu-Arg-(7-methoxynaphthyl)amide (1) is a substrate for calpain I. The specificity constant for 1 (kcatKm = 1405 ± 40 M−1s−1) is 10x greater than for any previously reported fluorogenic substrate. Using this substrate, a sensitive, continuous fluorogenic assay was developed permitting the identification of Z-(D)Ala-Leu-Phe-(OCO-2,6-Fl2-Ph) (69) as the first selective (>100-fold versus cathepsins B and L) time-dependent inhibitor of the enzyme.


ACS Medicinal Chemistry Letters | 2015

Discovery of a Potent Class of PI3Kα Inhibitors with Unique Binding Mode via Encoded Library Technology (ELT)

Hongfang Yang; Patricia F Medeiros; Kaushik Raha; Patricia A. Elkins; Kenneth Lind; Ruth Lehr; Nicholas D. Adams; Joelle L. Burgess; Stanley J. Schmidt; Steven David Knight; Kurt R. Auger; Michael D. Schaber; G. Joseph Franklin; Yun Ding; Jennifer L. DeLorey; Paolo A. Centrella; Sibongile Mataruse; Steven R. Skinner; Matthew A. Clark; John W. Cuozzo; Ghotas Evindar

In the search of PI3K p110α wild type and H1047R mutant selective small molecule leads, an encoded library technology (ELT) campaign against the desired target proteins was performed which led to the discovery of a selective chemotype for PI3K isoforms from a three-cycle DNA encoded library. An X-ray crystal structure of a representative inhibitor from this chemotype demonstrated a unique binding mode in the p110α protein.


ACS Medicinal Chemistry Letters | 2010

Discovery of the First Potent and Selective Inhibitor of Centromere-Associated Protein E: GSK923295.

Xiangping Qian; Andrew Mcdonald; Han-Jie Zhou; Nicholas D. Adams; Cynthia A. Parrish; Kevin J. Duffy; Duke M. Fitch; Rosanna Tedesco; Luke W. Ashcraft; Bing Yao; Hong Jiang; Jennifer Kuo Chen Huang; Melchor V. Marin; Carrie E. Aroyan; Jianchao Wang; Seyed Ahmed; Joelle L. Burgess; Amita M. Chaudhari; Carla A. Donatelli; Michael G. Darcy; Lance H. Ridgers; Ken A. Newlander; Stanley J. Schmidt; Deping Chai; Mariela Colón; Michael N. Zimmerman; Latesh Lad; Roman Sakowicz; Stephen Schauer; Lisa Belmont

Inhibition of mitotic kinesins represents a novel approach for the discovery of a new generation of anti-mitotic cancer chemotherapeutics. We report here the discovery of the first potent and selective inhibitor of centromere-associated protein E (CENP-E) 3-chloro-N-{(1S)-2-[(N,N-dimethylglycyl)amino]-1-[(4-{8-[(1S)-1-hydroxyethyl]imidazo[1,2-a]pyridin-2-yl}phenyl)methyl]ethyl}-4-[(1-methylethyl)oxy]benzamide (GSK923295; 1), starting from a high-throughput screening hit, 3-chloro-4-isopropoxybenzoic acid 2. Compound 1 has demonstrated broad antitumor activity in vivo and is currently in human clinical trials.


Bioorganic & Medicinal Chemistry Letters | 1995

Inhibition of human erythrocyte calpain I by novel quinolinecarboxamides

Todd L. Graybill; Roland E. Dolle; Irennegbe K. Osifo; Stanley J. Schmidt; Jill S. Gregory; Alex L. Harris; Matthew S. Miller

Abstract 1,4-Dihydro-4-oxo-3-quinolinecarboxamides are a class of non-peptide reversible inhibitor of human erythrocyte Calpain I. The preparation and in vitro evaluation of these compounds are discussed.


Bioorganic & Medicinal Chemistry Letters | 1997

3-chloro-4-carboxamido-6-arylpyridazines as a non-peptide class of interleukin-1β converting enzyme inhibitor

Roland E. Dolle; Denton Hoyer; James M. Rinker; Tina Morgan Ross; Stanley J. Schmidt; Carla T. Helaszek; Mark A. Ator

Abstract The 3-chloro-4-carboxamido-6-arylpyridazines are a novel class of interleukin-1β converting enzyme (ICE) inhibitor. These agents are irreversible inhibitors with pyridazine 23 possessing a k obs [I] = 355 M−1s−1. A structure-activity relationship for this non-peptide class of compounds and the putative mechanism for irreversible inactivation are described.

Collaboration


Dive into the Stanley J. Schmidt's collaboration.

Top Co-Authors

Avatar

Roland E. Dolle

University of Hertfordshire

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tina Morgan Ross

West Chester University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge