Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joelle Romac is active.

Publication


Featured researches published by Joelle Romac.


Gut | 2008

A pH-sensitive, neurogenic pathway mediates disease severity in a model of post-ERCP pancreatitis

Marc D. Noble; Joelle Romac

Background: Endoscopic retrograde cholangiopancreatography (ERCP) has a high risk of pancreatitis although the underlying mechanisms are unclear. Transient receptor potential vanilloid 1 (TRPV1) is a cation channel expressed on C and Aδ fibres of primary sensory neurons and is activated by low pH. TRPV1 activation causes release of inflammatory mediators that produce oedema and neutrophil infiltration. We previously demonstrated that neurogenic factors contribute to the pathogenesis of pancreatitis. Resiniferatoxin (RTX) is a TRPV1 agonist that, in high doses, defunctionalises C and Aδ fibres. When we discovered that the pH of radio-opaque contrast solutions used for ERCP was 6.9, we hypothesised that low pH may contribute to the development of contrast-induced pancreatitis via activation of TRPV1. Methods: Rats underwent equal pressure pancreatic ductal injection of contrast solutions at varying pH with or without RTX. Results: Contrast solution (pH 6.9) injected into the pancreatic duct caused a significant increase in pancreatic oedema, serum amylase, neutrophil infiltration, and histological damage. Solutions of pH 7.3 injected at equal pressure caused little damage. The severity of the pancreatitis was significantly increased by injection of solutions at pH 6.0. To determine if the effects of low pH were mediated by TRPV1, RTX was added to the contrast solutions. At pH levels of 6.0 and 6.9, RTX significantly reduced the severity of pancreatitis. Conclusions: Contrast solutions with low pH contribute to the development of pancreatitis through a TRPV1-dependent mechanism. It is possible that increasing the pH of contrast solution and/or adding an agent that inhibits primary sensory nerve activation may reduce the risk of post-ERCP pancreatitis.


Scientific Reports | 2016

Small molecule dual-inhibitors of TRPV4 and TRPA1 for attenuation of inflammation and pain

Patrick Kanju; Yong Chen; Whasil Lee; Michele Yeo; Suk Hee Lee; Joelle Romac; Rafiq A. Shahid; Ping Fan; David M. Gooden; Sidney A. Simon; Ivan Spasojevic; Robert A. Mook; Farshid Guilak; Wolfgang Liedtke

TRPV4 ion channels represent osmo-mechano-TRP channels with pleiotropic function and wide-spread expression. One of the critical functions of TRPV4 in this spectrum is its involvement in pain and inflammation. However, few small-molecule inhibitors of TRPV4 are available. Here we developed TRPV4-inhibitory molecules based on modifications of a known TRPV4-selective tool-compound, GSK205. We not only increased TRPV4-inhibitory potency, but surprisingly also generated two compounds that potently co-inhibit TRPA1, known to function as chemical sensor of noxious and irritant signaling. We demonstrate TRPV4 inhibition by these compounds in primary cells with known TRPV4 expression - articular chondrocytes and astrocytes. Importantly, our novel compounds attenuate pain behavior in a trigeminal irritant pain model that is known to rely on TRPV4 and TRPA1. Furthermore, our novel dual-channel blocker inhibited inflammation and pain-associated behavior in a model of acute pancreatitis – known to also rely on TRPV4 and TRPA1. Our results illustrate proof of a novel concept inherent in our prototype compounds of a drug that targets two functionally-related TRP channels, and thus can be used to combat isoforms of pain and inflammation in-vivo that involve more than one TRP channel. This approach could provide a novel paradigm for treating other relevant health conditions.


Pancreas | 2008

Pharmacologic disruption of TRPV1-expressing primary sensory neurons but not genetic deletion of TRPV1 protects mice against pancreatitis.

Joelle Romac; Shannon McCall; John E. Humphrey; Jinseok Heo

Objectives: Transient receptor potential subtype vanilloid 1 (TRPV1) is an ion channel that is primarily expressed by primary sensory neurons where it mediates pain and heat sensation and participates in neurogenic inflammation. In this study, we examined the role of TRPV1 during neurogenic activation of pancreatic inflammation using a secretagogue-induced model in mice. Methods: A supramaximal dose of caerulein (50 &mgr;g/kg) was injected hourly for 12 hours. Mice lacking TRPV1 were compared to wild-type animals. Results: All the parameters: serum amylase, pancreatic myeloperoxidase activity, histological scoring, pancreatic wet weight/body weight ratio, and quantification of neurokinin-1 receptor internalization indicated that null mice were not protected from acute pancreatitis. However, when primary sensory neurons were ablated by injection of the neurotoxin and TRPV1 agonist, resiniferatoxin, pancreatitis was ameliorated in wild-type mice but not in null mice, indicating that nerves bearing TRPV1 are part of the inflammatory pathway in acute pancreatitis because disappearance significantly reduced the inflammatory response. Conclusions: Nerves expressing TRPV1 participate in the neurogenic inflammation during acute pancreatitis. The lack of protection in TRPV1 null mice suggests that an alternate pathway to TRPV1 coexists in the same neurons.


Pancreas | 2010

Protection against chronic pancreatitis and pancreatic fibrosis in mice overexpressing pancreatic secretory trypsin inhibitor.

Jaimie D. Nathan; Joelle Romac; Ruth Y. Peng; Michael Peyton; Don C. Rockey

Objectives: Mutations in the gene encoding for pancreatic secretory trypsin inhibitor (PSTI) can contribute to chronic pancreatitis. In the current study, we tested whether overexpression of PSTI-I in mice protects against chronic pancreatitis and pancreatic fibrosis. Methods: Rat PSTI-I expression was targeted to pancreatic acinar cells in transgenic mice. Chronic pancreatitis was achieved by intraperitoneal injection of cerulein for 10 weeks. Pancreatitis severity was assessed by histological grading of inflammatory infiltrate, atrophy, and fibrosis; quantitation of myeloperoxidase (MPO) activity; quantitative morphometric analysis of collagen content; and measurements of type I collagen, fibronectin, and transforming growth factor &bgr; mRNA expression. Results: Cerulein administration to nontransgenic mice produced histological evidence of inflammatory infiltrate, glandular atrophy, and parenchymal fibrosis and increased collagen production, MPO activity, and collagen I and fibronectin mRNA levels. In cerulein-treated PSTI transgenic mice, there were significant reductions in inflammatory infiltrate, MPO activity, fibrosis, and collagen I and fibronectin mRNA levels. Transgenic mice treated with cerulein had significantly less collagen than nontransgenic mice. Conclusions: The severity of chronic pancreatitis and pancreatic fibrosis is significantly reduced in mice expressing rat PSTI-I. We propose that pancreatic trypsin inhibitors play a protective role in the pancreatic response to repeated injurious events.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2010

Transgenic expression of pancreatic secretory trypsin inhibitor-1 rescues SPINK3-deficient mice and restores a normal pancreatic phenotype.

Joelle Romac; Masaki Ohmuraya; Cathy M. Bittner; M. Faraz Majeed; Steven R. Vigna; Jianwen Que; Brian E. Fee; Thomas Wartmann; Ken Ichi Yamamura

Endogenous trypsin inhibitors are synthesized, stored, and secreted by pancreatic acinar cells. It is believed that they play a protective role in the pancreas by inhibiting trypsin within the cell should trypsinogen become prematurely activated. Rodent trypsin inhibitors are highly homologous to human serine protease inhibitor Kazal-type 1 (SPINK1). The mouse has one pancreatic trypsin inhibitor known as SPINK3, and the rat has two trypsin inhibitors commonly known as pancreatic secretory trypsin inhibitors I and II (PSTI-I and -II). Rat PSTI-I is a 61-amino acid protein that shares 65% sequence identity with mouse SPINK3. It was recently demonstrated that mice with genetic deletion of the Spink3 gene (Spink3(-/-)) do not survive beyond 15 days and lack normal pancreata because of pancreatic autophagy. We have shown that targeted transgenic expression of the rat Psti1 gene to acinar cells in mice [TgN(Psti1)] protects mice against caerulein-induced pancreatitis. To determine whether the autophagic phenotype and lethality in Spink3(-/-) mice were due to lack of pancreatic trypsin inhibitor, we conducted breeding studies with Spink3(+/-) heterozygous mice and TgN(Psti1) mice. We observed that, whereas Spink3(+/+), Spink3(+/-), and Spink3(-/-)/TgN(Psti1) mice had similar survival rates, no Spink3(-/-) mice survived longer than 1 wk. The level of expression of SPINK3 protein in acini was reduced in heterozygote mice compared with wild-type mice. Furthermore, endogenous trypsin inhibitor capacity was reduced in the pancreas of heterozygote mice compared with wild-type or knockout mice rescued with the rat Psti1 gene. Surprisingly, the lesser amount of SPINK3 present in the pancreata of heterozygote mice did not predispose animals to increased susceptibility to caerulein-induced acute pancreatitis. We propose that a threshold level of expression is sufficient to protect against pancreatitis.


Peptides | 1999

Monitor peptide binding sites are expressed in the rat liver and small intestine

Douglas C. McVey; Joelle Romac; William C. Clay; Thomas A. Kost; Steven R. Vigna

125I-monitor peptide binding was performed using frozen sections of the rat liver and gut and visualized using autoradiography. Saturable binding was observed in unidentified single cells in the liver and in the mucosa of the small intestine. Epidermal growth factor (EGF) and GTPgammaS did not inhibit 125I-monitor peptide binding indicating that the binding sites are not EGF receptors or G protein-coupled receptors. The liver binding site exhibited an affinity 3.7-4.4-fold higher than those in the small intestine. It has been established that intraluminal monitor peptide releases cholecystokinin from the small intestine. The present results indicate that monitor peptide may also have liver associated functions.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2012

Pancreatic secretory trypsin inhibitor I reduces the severity of chronic pancreatitis in mice overexpressing interleukin-1β in the pancreas.

Joelle Romac; Rafiq A. Shahid; Steve S. Choi; Gamze Karaca; Christoph B. Westphalen; Timothy C. Wang

IL-1β is believed to play a pathogenic role in the development of pancreatitis. Expression of human IL-1β in pancreatic acinar cells produces chronic pancreatitis, characterized by extensive intrapancreatic inflammation, atrophy, and fibrosis. To determine if activation of trypsinogen is important in the pathogenesis of chronic pancreatitis in this model, we crossed IL-1β transgenic [Tg(IL1β)] mice with mice expressing a trypsin inhibitor that is normally produced in rat pancreatic acinar cells [pancreatic secretory trypsin inhibitor (PTSI) I]. We previously demonstrated that transgenic expression of PSTI-I [Tg(Psti1)] increased pancreatic trypsin inhibitor activity by 190%. Tg(IL1β) mice were found to have marked pancreatic inflammation, characterized by histological changes, including acinar cell loss, inflammatory cell infiltration, and fibrosis, as well as elevated myeloperoxidase activity and elevated pancreatic trypsin activity, as early as 6 wk of age. In contrast to Tg(IL1β) mice, pancreatitis was significantly less severe in dual-transgenic [Tg(IL1β)-Tg(Psti1)] mice expressing IL-1β and PSTI-I in pancreatic acinar cells. These findings indicate that overexpression of PSTI-I reduces the severity of pancreatitis and that pancreatic trypsin activity contributes to the pathogenesis of an inflammatory model of chronic pancreatitis.


Nature Communications | 2018

Piezo1 is a mechanically activated ion channel and mediates pressure induced pancreatitis

Joelle Romac; Rafiq A. Shahid; Sandip M. Swain; Steven R. Vigna

Merely touching the pancreas can lead to premature zymogen activation and pancreatitis but the mechanism is not completely understood. Here we demonstrate that pancreatic acinar cells express the mechanoreceptor Piezo1 and application of pressure within the gland produces pancreatitis. To determine if this effect is through Piezo1 activation, we induce pancreatitis by intrapancreatic duct instillation of the Piezo1 agonist Yoda1. Pancreatitis induced by pressure within the gland is prevented by a Piezo1 antagonist. In pancreatic acinar cells, Yoda1 stimulates calcium influx and induces calcium-dependent pancreatic injury. Finally, selective acinar cell-specific genetic deletion of Piezo1 protects mice against pressure-induced pancreatitis. Thus, activation of Piezo1 in pancreatic acinar cells is a mechanism for pancreatitis and may explain why pancreatitis develops following pressure on the gland as in abdominal trauma, pancreatic duct obstruction, pancreatography, or pancreatic surgery. Piezo1 blockade may prevent pancreatitis when manipulation of the gland is anticipated.Manipulation of the pancreas during surgery can induce acute pancreatitis due to zymogen activation. Here the authors show that the mechanoreceptor Piezo1 is activated by pressure and its activation leads to calcium dependent pancreatic injury whereas its inhibition is protective against pancreatitis.


European Journal of Clinical Investigation | 2015

Endogenous elevation of plasma cholecystokinin does not prevent gallstones.

Rafiq A. Shahid; David Q.-H. Wang; Brian E. Fee; Shannon McCall; Joelle Romac; Steven R. Vigna

Regular gall bladder contraction reduces bile stasis and prevents gallstone formation. Intraduodenal administration of exogenous pancreatic secretory trypsin inhibitor‐I (PSTI‐I, also known as monitor peptide) causes cholecystokinin (CCK) secretion.


Cellular and molecular gastroenterology and hepatology | 2015

Acinar Cell Production of Leukotriene B4 Contributes to Development of Neurogenic Pancreatitis in Mice

Rafiq A. Shahid; Steven R. Vigna; Amanda Layne; Joelle Romac

Background & Aims In the pancreas, activation of primary sensory nerves through the transient receptor potential vanilloid-1 (TRPV1) ion channel contributes to the early stages of development of pancreatitis. Little is known about the mechanism by which this occurs. We investigated whether leukotriene B4 (LTB4) is an endogenous agonist of TRPV1 and mediates pancreatitis. Methods Acute inflammation was induced in the pancreata of Trpv1−/− mice and their wild-type littermates by retrograde infusion of the main pancreatic duct with 2% sodium taurocholate (NaT) or intraperitoneal injections of caerulein. Mice were also given injections of resiniferatoxin (an excitotoxin that desensitizes TRPV1) or MK886 (a drug that inhibits LTB4 biosynthesis). Pancreatic tissues and plasma were collected and analyzed. Results Retrograde perfusion of the main pancreatic ducts of wild-type mice with NaT caused severe acute pancreatitis; the severity was reduced by coadministration of resiniferatoxin. Trpv1−/− mice developed a less severe pancreatitis after NaT administration compared with controls. Administration of MK886 before perfusion with NaT also significantly reduced the severity of pancreatitis in wild-type mice. Pancreatic tissues from mice given NaT had a marked increase in the level of 5-lipoxygenase immunoreactivity specifically in acinar cells. Bile acid and caerulein induced secretion of LTB4 by cultured pancreatic acinar cells; MK886 inhibited this process. Conclusions Administration of caerulein or intraductal bile acids in mice causes production of LTB4 by pancreatic acinar cells. This activates TRPV1 on primary sensory nerves to induce acute pancreatitis.

Collaboration


Dive into the Joelle Romac's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jaimie D. Nathan

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Michael Peyton

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Raymond J. MacDonald

University of Texas Southwestern Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge