Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joerg Fettke is active.

Publication


Featured researches published by Joerg Fettke.


Plant Physiology | 2013

Feedback Inhibition of Starch Degradation in Arabidopsis Leaves Mediated by Trehalose 6-Phosphate

Marina Camara Mattos Martins; Mahdi Hejazi; Joerg Fettke; Martin Steup; Regina Feil; Ursula Krause; Stéphanie Arrivault; Daniel Vosloh; Carlos M. Figueroa; Alexander Ivakov; Umesh Prasad Yadav; Maria Piques; Daniela Metzner; Mark Stitt; John E. Lunn

Trehalose 6-phosphate inhibits the nighttime breakdown of transitory starch in leaves, potentially linking starch remobilization to sucrose demand for respiration and growth at night. Many plants accumulate substantial starch reserves in their leaves during the day and remobilize them at night to provide carbon and energy for maintenance and growth. In this paper, we explore the role of a sugar-signaling metabolite, trehalose-6-phosphate (Tre6P), in regulating the accumulation and turnover of transitory starch in Arabidopsis (Arabidopsis thaliana) leaves. Ethanol-induced overexpression of trehalose-phosphate synthase during the day increased Tre6P levels up to 11-fold. There was a transient increase in the rate of starch accumulation in the middle of the day, but this was not linked to reductive activation of ADP-glucose pyrophosphorylase. A 2- to 3-fold increase in Tre6P during the night led to significant inhibition of starch degradation. Maltose and maltotriose did not accumulate, suggesting that Tre6P affects an early step in the pathway of starch degradation in the chloroplasts. Starch granules isolated from induced plants had a higher orthophosphate content than granules from noninduced control plants, consistent either with disruption of the phosphorylation-dephosphorylation cycle that is essential for efficient starch breakdown or with inhibition of starch hydrolysis by β-amylase. Nonaqueous fractionation of leaves showed that Tre6P is predominantly located in the cytosol, with estimated in vivo Tre6P concentrations of 4 to 7 µm in the cytosol, 0.2 to 0.5 µm in the chloroplasts, and 0.05 µm in the vacuole. It is proposed that Tre6P is a component in a signaling pathway that mediates the feedback regulation of starch breakdown by sucrose, potentially linking starch turnover to demand for sucrose by growing sink organs at night.


Journal of Experimental Botany | 2009

Eukaryotic starch degradation: integration of plastidial and cytosolic pathways

Joerg Fettke; Mahdi Hejazi; Julia Smirnova; Erik Höchel; Marion Stage; Martin Steup

Starch is an important plant product widely used as a nutrient, as a source of renewable energy, and for many technological applications. In plants, starch is the almost ubiquitous storage carbohydrate whereas most heterotrophic prokaryotes and eukaryotes rely on glycogen. Despite close similarities in basic chemical features, starch and glycogen differ in both structural and physicochemical properties. Glycogen is a hydrosoluble macromolecule with evenly distributed branching points. Starch exists as a water-insoluble particle having a defined (and evolutionary conserved) internal structure. The biochemistry of starch requires the co-operation of up to 40 distinct (iso)enzymes whilst approximately 10 (iso)enzymes permit glycogen metabolism. The biosynthesis and degradation of native starch include the transition of carbohydrates from the soluble to the solid phase and vice versa. In this review, two novel aspects of the eukaryotic plastidial starch degradation are discussed: Firstly, biochemical reactions that take place at the surface of particulate glucans and mediate the phase transition of carbohydrates. Secondly, processes that occur downstream of the export of starch-derived sugars into the cytosol. Degradation of transitory starch mainly results in the formation of neutral sugars, such as glucose and maltose, that are transported into the cytosol via the respective translocators. The cytosolic metabolism of the neutral sugars includes the action of a hexokinase, a phosphoglucomutase, and a transglucosidase that utilizes high molecular weight glycans as a transient glucosyl acceptor or donor. Data are included on the transglucosidase (disproportionating isozyme 2) in Cyanophora paradoxa that accumulates storage carbohydrates in the cytosol rather than in the plastid.


Plant Biology | 2010

The role of plastidial glucose-6-phosphate/phosphate translocators in vegetative tissues of Arabidopsis thaliana mutants impaired in starch biosynthesis

Hans-Henning Kunz; Rainer E. Häusler; Joerg Fettke; Karoline Herbst; P. Niewiadomski; Markus Gierth; Kirsten Bell; M. Steup; Ulf-Ingo Flügge; Anja Schneider

Arabidopsis thaliana mutants impaired in starch biosynthesis due to defects in either ADP glucose pyrophosphorylase (adg1-1), plastidic phosphoglucose mutase (pgm) or a new allele of plastidic phosphoglucose isomerase (pgi1-2) exhibit substantial activity of glucose-6-phosphate (Glc6P) transport in leaves that is mediated by a Glc6P/phosphate translocator (GPT) of the inner plastid envelope membrane. In contrast to the wild type, GPT2, one of two functional GPT genes of A. thaliana, is strongly induced in these mutants during the light period. The proposed function of the GPT in plastids of non-green tissues is the provision of Glc6P for starch biosynthesis and/or the oxidative pentose phosphate pathway. The function of GPT in photosynthetic tissues, however, remains obscure. The adg1-1 and pgi1-2 mutants were crossed with the gpt2-1 mutant defective in GPT2. Whereas adg1-1/gpt2-1 was starch-free, residual starch could be detected in pgi1-2/gpt2-1 and was confined to stomatal guard cells, bundle sheath cells and root tips, which parallels the reported spatial expression profile of AtGPT1. Glucose content in the cytosolic heteroglycan increased substantially in adg1-1 but decreased in pgi1-2, suggesting that the plastidic Glc6P pool contributes to its biosynthesis. The abundance of GPT2 mRNA correlates with increased levels of soluble sugars, in particular of glucose in leaves, suggesting induction by the sugar-sensing pathway. The possible function of GPT2 in starch-free mutants is discussed in the background of carbon requirement in leaves during the light-dark cycle.


Plant Physiology | 2010

The Laforin-Like Dual-Specificity Phosphatase SEX4 from Arabidopsis Hydrolyzes Both C6- and C3-Phosphate Esters Introduced by Starch-Related Dikinases and Thereby Affects Phase Transition of α-Glucans

Mahdi Hejazi; Joerg Fettke; Oliver Kötting; Samuel C. Zeeman; Martin Steup

The biochemical function of the Laforin-like dual-specific phosphatase AtSEX4 (EC 3.1.3.48) has been studied. Crystalline maltodextrins representing the A- or the B-type allomorph were prephosphorylated using recombinant glucan, water dikinase (StGWD) or the successive action of both plastidial dikinases (StGWD and AtPWD). AtSEX4 hydrolyzed carbon 6-phosphate esters from both the prephosphorylated A- and B-type allomorphs and the kinetic constants are similar. The phosphatase also acted on prelabeled carbon-3 esters from both crystalline maltodextrins. Similarly, native starch granules prelabeled in either the carbon-6 or carbon-3 position were also dephosphorylated by AtSEX4. The phosphatase did also hydrolyze phosphate esters of both prephosphorylated maltodextrins when the (phospho)glucans had been solubilized by heat treatment. Submillimolar concentrations of nonphosphorylated maltodextrins inhibited AtSEX4 provided they possessed a minimum of length and had been solubilized. As opposed to the soluble phosphomaltodextrins, the AtSEX4-mediated dephosphorylation of the insoluble substrates was incomplete and at least 50% of the phosphate esters were retained in the pelletable (phospho)glucans. The partial dephosphorylation of the insoluble glucans also strongly reduced the release of nonphosphorylated chains into solution. Presumably, this effect reflects fast structural changes that following dephosphorylation occur near the surface of the maltodextrin particles. A model is proposed defining distinct stages within the phosphorylation/dephosphorylation-dependent transition of α-glucans from the insoluble to the soluble state.


Plant Physiology | 2011

Glucose-1-Phosphate Transport into Protoplasts and Chloroplasts from Leaves of Arabidopsis

Joerg Fettke; Irina Malinova; Tanja Albrecht; Mahdi Hejazi; Martin Steup

Almost all glucosyl transfer reactions rely on glucose-1-phosphate (Glc-1-P) that either immediately acts as glucosyl donor or as substrate for the synthesis of the more widely used Glc dinucleotides, ADPglucose or UDPglucose. In this communication, we have analyzed two Glc-1-P-related processes: the carbon flux from externally supplied Glc-1-P to starch by either mesophyll protoplasts or intact chloroplasts from Arabidopsis (Arabidopsis thaliana). When intact protoplasts or chloroplasts are incubated with [U-14C]Glc-1-P, starch is rapidly labeled. Incorporation into starch is unaffected by the addition of unlabeled Glc-6-P or Glc, indicating a selective flux from Glc-1-P to starch. However, illuminated protoplasts incorporate less 14C into starch when unlabeled bicarbonate is supplied in addition to the 14C-labeled Glc-1-P. Mesophyll protoplasts incubated with [U-14C]Glc-1-P incorporate 14C into the plastidial pool of adenosine diphosphoglucose. Protoplasts prepared from leaves of mutants of Arabidopsis that lack either the plastidial phosphorylase or the phosphoglucomutase isozyme incorporate 14C derived from external Glc-1-P into starch, but incorporation into starch is insignificant when protoplasts from a mutant possessing a highly reduced ADPglucose pyrophosphorylase activity are studied. Thus, the path of assimilatory starch biosynthesis initiated by extraplastidial Glc-1-P leads to the plastidial pool of adenosine diphosphoglucose, and at this intermediate it is fused with the Calvin cycle-driven route. Mutants lacking the plastidial phosphoglucomutase contain a small yet significant amount of transitory starch.


New Phytologist | 2010

Glucose 1-phosphate is efficiently taken up by potato (Solanum tuberosum) tuber parenchyma cells and converted to reserve starch granules.

Joerg Fettke; Tanja Albrecht; Mahdi Hejazi; Sebastian Mahlow; Yasunori Nakamura; Martin Steup

Reserve starch is an important plant product but the actual biosynthetic process is not yet fully understood. Potato (Solanum tuberosum) tuber discs from various transgenic plants were used to analyse the conversion of external sugars or sugar derivatives to starch. By using in vitro assays, a direct glucosyl transfer from glucose 1-phosphate to native starch granules as mediated by recombinant plastidial phosphorylase was analysed. Compared with labelled glucose, glucose 6-phosphate or sucrose, tuber discs converted externally supplied [(14)C]glucose 1-phosphate into starch at a much higher rate. Likewise, tuber discs from transgenic lines with a strongly reduced expression of cytosolic phosphoglucomutase, phosphorylase or transglucosidase converted glucose 1-phosphate to starch with the same or even an increased rate compared with the wild-type. Similar results were obtained with transgenic potato lines possessing a strongly reduced activity of both the cytosolic and the plastidial phosphoglucomutase. Starch labelling was, however, significantly diminished in transgenic lines, with a reduced concentration of the plastidial phosphorylase isozymes. Two distinct paths of reserve starch biosynthesis are proposed that explain, at a biochemical level, the phenotype of several transgenic plant lines.


Plant Physiology | 2009

The Two Plastidial Starch-Related Dikinases Sequentially Phosphorylate Glucosyl Residues at the Surface of Both the A- and B-Type Allomorphs of Crystallized Maltodextrins But the Mode of Action Differs

Mahdi Hejazi; Joerg Fettke; Oskar Paris; Martin Steup

In this study, two crystallized maltodextrins were generated that consist of the same oligoglucan pattern but differ strikingly in the physical order of double helices. As revealed by x-ray diffraction, they represent the highly ordered A- and B-type allomorphs. Both crystallized maltodextrins were similar in size distribution and birefringence. They were used as model substrates to study the consecutive action of the two starch-related dikinases, the glucan, water dikinase and the phosphoglucan, water dikinase. The glucan, water dikinase and the phosphoglucan, water dikinase selectively esterify glucosyl residues in the C6 and C3 positions, respectively. Recombinant glucan, water dikinase phosphorylated both allomorphs with similar rates and caused complete glucan solubilization. Soluble neutral maltodextrins inhibited the glucan, water dikinase-mediated phosphorylation of crystalline particles. Recombinant phosphoglucan, water dikinase phosphorylated both the A- and B-type allomorphs only following a prephosphorylation by the glucan, water dikinase, and the activity increased with the extent of prephosphorylation. The action of the phosphoglucan, water dikinase on the prephosphorylated A- and B-type allomorphs differed. When acting on the B-type allomorph, by far more phosphoglucans were solubilized as compared with the A type. However, with both allomorphs, the phosphoglucan, water dikinase formed significant amounts of monophosphorylated phosphoglucans. Thus, the enzyme is capable of acting on neutral maltodextrins. It is concluded that the actual carbohydrate substrate of the phosphoglucan, water dikinase is defined by physical rather than by chemical parameters. A model is proposed that explains, at the molecular level, the consecutive action of the two starch-related dikinases.


Plant Physiology | 2014

Double Knockout Mutants of Arabidopsis Grown under Normal Conditions Reveal that the Plastidial Phosphorylase Isozyme Participates in Transitory Starch Metabolism

Irina Malinova; Sebastian Mahlow; Saleh Alseekh; Tom Orawetz; Alisdair R. Fernie; Otto Baumann; Martin Steup; Joerg Fettke

A plastidial phosphorylase isozyme participates in starch metabolism and integrates with central carbon metabolism in the entire cell biology. In leaves of two starch-related single-knockout lines lacking either the cytosolic transglucosidase (also designated as disproportionating enzyme 2, DPE2) or the maltose transporter (MEX1), the activity of the plastidial phosphorylase isozyme (PHS1) is increased. In both mutants, metabolism of starch-derived maltose is impaired but inhibition is effective at different subcellular sites. Two constitutive double knockout mutants were generated (designated as dpe2-1 × phs1a and mex1 × phs1b) both lacking functional PHS1. They reveal that in normally grown plants, the plastidial phosphorylase isozyme participates in transitory starch degradation and that the central carbon metabolism is closely integrated into the entire cell biology. All plants were grown either under continuous illumination or in a light-dark regime. Both double mutants were compromised in growth and, compared with the single knockout plants, possess less average leaf starch when grown in a light-dark regime. Starch and chlorophyll contents decline with leaf age. As revealed by transmission electron microscopy, mesophyll cells degrade chloroplasts, but degradation is not observed in plants grown under continuous illumination. The two double mutants possess similar but not identical phenotypes. When grown in a light-dark regime, mesophyll chloroplasts of dpe2-1 × phs1a contain a single starch granule but under continuous illumination more granules per chloroplast are formed. The other double mutant synthesizes more granules under either growth condition. In continuous light, growth of both double mutants is similar to that of the parental single knockout lines. Metabolite profiles and oligoglucan patterns differ largely in the two double mutants.


Plant Physiology | 2008

Alterations in cytosolic glucose-phosphate metabolism affect structural features and biochemical properties of starch-related heteroglycans.

Joerg Fettke; Adriano Nunes-Nesi; Jessica Alpers; Michal Szkop; Alisdair R. Fernie; Martin Steup

The cytosolic pools of glucose-1-phosphate (Glc-1-P) and glucose-6-phosphate are essential intermediates in several biosynthetic paths, including the formation of sucrose and cell wall constituents, and they are also linked to the cytosolic starch-related heteroglycans. In this work, structural features and biochemical properties of starch-related heteroglycans were analyzed as affected by the cytosolic glucose monophosphate metabolism using both source and sink organs from wild-type and various transgenic potato (Solanum tuberosum) plants. In leaves, increased levels of the cytosolic phosphoglucomutase (cPGM) did affect the cytosolic heteroglycans, as both the glucosyl content and the size distribution were diminished. By contrast, underexpression of cPGM resulted in an unchanged size distribution and an unaltered or even increased glucosyl content of the heteroglycans. Heteroglycans prepared from potato tubers were found to be similar to those from leaves but were not significantly affected by the level of cPGM activity. However, external glucose or Glc-1-P exerted entirely different effects on the cytosolic heteroglycans when added to tuber discs. Glucose was directed mainly toward starch and cell wall material, but incorporation into the constituents of the cytosolic heteroglycans was very low and roughly reflected the relative monomeric abundance. By contrast, Glc-1-P was selectively taken up by the tuber discs and resulted in a fast increase in the glucosyl content of the heteroglycans that quantitatively reflected the level of the cytosolic phosphorylase activity. Based on 14C labeling experiments, we propose that in the cytosol, glucose and Glc-1-P are metabolized by largely separated paths.


New Phytologist | 2014

Phosphorylation of transitory starch by α‐glucan, water dikinase during starch turnover affects the surface properties and morphology of starch granules

Sebastian Mahlow; Mahdi Hejazi; Franziska Kuhnert; Andreas Garz; Henrike Brust; Otto Baumann; Joerg Fettke

Glucan, water dikinase (GWD) is a key enzyme of starch metabolism but the physico-chemical properties of starches isolated from GWD-deficient plants and their implications for starch metabolism have so far not been described. Transgenic Arabidopsis thaliana plants with reduced or no GWD activity were used to investigate the properties of starch granules. In addition, using various in vitro assays, the action of recombinant GWD, β-amylase, isoamylase and starch synthase 1 on the surface of native starch granules was analysed. The internal structure of granules isolated from GWD mutant plants is unaffected, as thermal stability, allomorph, chain length distribution and density of starch granules were similar to wild-type. However, short glucan chain residues located at the granule surface dominate in starches of transgenic plants and impede GWD activity. A similarly reduced rate of phosphorylation by GWD was also observed in potato tuber starch fractions that differ in the proportion of accessible glucan chain residues at the granule surface. A model is proposed to explain the characteristic morphology of starch granules observed in GWD transgenic plants. The model postulates that the occupancy rate of single glucan chains at the granule surface limits accessibility to starch-related enzymes.

Collaboration


Dive into the Joerg Fettke's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sławomir Orzechowski

Warsaw University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge