Joerg Pfeifle
Karlsruhe Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Joerg Pfeifle.
IEEE Journal of Selected Topics in Quantum Electronics | 2013
Juerg Leuthold; Christian Koos; Wolfgang Freude; Luca Alloatti; Robert Palmer; Dietmar Korn; Joerg Pfeifle; Matthias Lauermann; Raluca Dinu; Silvan Wehrli; Mojca Jazbinsek; Peter Günter; Michael Waldow; Thorsten Wahlbrink; Jens Bolten; H. Kurz; Maryse Fournier; Jean-Marc Fedeli; Hui Yu; Wim Bogaerts
Organic materials combined with strongly guiding silicon waveguides open the route to highly efficient electro-optical devices. Modulators based on the so-called silicon-organic hybrid (SOH) platform have only recently shown frequency responses up to 100 GHz, high-speed operation beyond 112 Gbit/s with fJ/bit power consumption. In this paper, we review the SOH platform and discuss important devices such as Mach-Zehnder and IQ-modulators based on the linear electro-optic effect. We further show liquid-crystal phase-shifters with a voltage-length product as low as VπL = 0.06 V·mm and sub-μW power consumption as required for slow optical switching or tuning optical filters and devices.
Nature | 2017
Pablo Marin-Palomo; Juned N. Kemal; Maxim Karpov; Arne Kordts; Joerg Pfeifle; Martin H. P. Pfeiffer; Philipp Trocha; Stefan Wolf; Victor Brasch; Miles Anderson; Ralf Rosenberger; Kovendhan Vijayan; Wolfgang Freude; Tobias J. Kippenberg; Christian Koos
Solitons are waveforms that preserve their shape while propagating, as a result of a balance of dispersion and nonlinearity. Soliton-based data transmission schemes were investigated in the 1980s and showed promise as a way of overcoming the limitations imposed by dispersion of optical fibres. However, these approaches were later abandoned in favour of wavelength-division multiplexing schemes, which are easier to implement and offer improved scalability to higher data rates. Here we show that solitons could make a comeback in optical communications, not as a competitor but as a key element of massively parallel wavelength-division multiplexing. Instead of encoding data on the soliton pulse train itself, we use continuous-wave tones of the associated frequency comb as carriers for communication. Dissipative Kerr solitons (DKSs) (solitons that rely on a double balance of parametric gain and cavity loss, as well as dispersion and nonlinearity) are generated as continuously circulating pulses in an integrated silicon nitride microresonator via four-photon interactions mediated by the Kerr nonlinearity, leading to low-noise, spectrally smooth, broadband optical frequency combs. We use two interleaved DKS frequency combs to transmit a data stream of more than 50 terabits per second on 179 individual optical carriers that span the entire telecommunication C and L bands (centred around infrared telecommunication wavelengths of 1.55 micrometres). We also demonstrate coherent detection of a wavelength-division multiplexing data stream by using a pair of DKS frequency combs—one as a multi-wavelength light source at the transmitter and the other as the corresponding local oscillator at the receiver. This approach exploits the scalability of microresonator-based DKS frequency comb sources for massively parallel optical communications at both the transmitter and the receiver. Our results demonstrate the potential of these sources to replace the arrays of continuous-wave lasers that are currently used in high-speed communications. In combination with advanced spatial multiplexing schemes and highly integrated silicon photonic circuits, DKS frequency combs could bring chip-scale petabit-per-second transceivers into reach.
Optics Express | 2014
Claudius Weimann; Philipp Schindler; Robert Palmer; Stefan Wolf; D. Bekele; Dietmar Korn; Joerg Pfeifle; Sebastian Koeber; Rene Schmogrow; Luca Alloatti; Delwin L. Elder; Hao Yu; Wim Bogaerts; Larry R. Dalton; Wolfgang Freude; Juerg Leuthold; Christian Koos
We demonstrate frequency comb sources based on silicon-organic hybrid (SOH) electro-optic modulators. Frequency combs with line spacings of 25 GHz and 40 GHz are generated, featuring flat-top spectra with less than 2 dB power variations over up to 7 lines. The combs are used for WDM data transmission at terabit/s data rates and distances of up to 300 km.
Optics Express | 2012
Joerg Pfeifle; Luca Alloatti; Wolfgang Freude; Juerg Leuthold; Christian Koos
A highly efficient phase shifter based on the silicon-organic hybrid (SOH) platform is theoretically investigated and experimentally tested. The device consists of a silicon slot waveguide covered with an organic liquid-crystal (LC) cladding. A record-low voltage-length product of U(π)L = 0.085 Vmm can be achieved for high-purity materials where an optimum operation point can be set by a DC bias. With standard materials and without a DC bias, we measure a phase shift of 35π with a drive voltage of only 5 V for a 1.7 mm long device corresponding to a voltage-length product of U(π)L = 0.24 Vmm. The power dissipation is about six orders of magnitude smaller than that of state-of-the-art thermo-optic devices, thereby enabling dense integration of LC phase shifters in advanced photonic integrated circuits.
Journal of Lightwave Technology | 2016
Christian Koos; Juerg Leuthold; Wolfgang Freude; Manfred Kohl; Larry R. Dalton; Wim Bogaerts; Anna Lena Giesecke; Matthias Lauermann; Argishti Melikyan; S. Koeber; Stefan Wolf; Claudius Weimann; S. Muehlbrandt; Kira Koehnle; Joerg Pfeifle; W. Hartmann; Y. Kutuvantavida; Sandeep Ummethala; Robert Palmer; Dietmar Korn; Luca Alloatti; Philipp Schindler; Delwin L. Elder; Thorsten Wahlbrink; Jens Bolten
Silicon photonics offers tremendous potential for inexpensive high-yield photonic-electronic integration. Besides conventional dielectric waveguides, plasmonic structures can also be efficiently realized on the silicon photonic platform, reducing device footprint by more than an order of magnitude. However, neither silicon nor metals exhibit appreciable second-order optical nonlinearities, thereby making efficient electro-optic modulators challenging to realize. These deficiencies can be overcome by the concepts of silicon-organic hybrid (SOH) and plasmonic-organic hybrid integration, which combine SOI waveguides and plasmonic nanostructures with organic electro-optic cladding materials.
Optics Express | 2015
Joerg Pfeifle; Vidak Vujicic; Regan Watts; Philipp Schindler; Claudius Weimann; Rui Zhou; Wolfgang Freude; Liam P. Barry; Christian Koos
Terabit/s super-channels are likely to become the standard for next-generation optical networks and optical interconnects. A particularly promising approach exploits optical frequency combs for super-channel generation. We show that injection locking of a gain-switched laser diode can be used to generate frequency combs that are particularly well suited for terabit/s super-channel transmission. This approach stands out due to its extraordinary stability and flexibility in tuning both center wavelength and line spacing. We perform a series of transmission experiments using different comb line spacings and modulation formats. Using 9 comb lines and 16QAM signaling, an aggregate line rate (net data rate) of 1.296 Tbit/s (1.109 Tbit/s) is achieved for transmission over 150 km of standard single mode fiber (SSMF) using a spectral bandwidth of 166.5 GHz, which corresponds to a (net) spectral efficiency of 7.8 bit/s/Hz (6.7 bit/s/Hz). The line rate (net data rate) can be boosted to 2.112 Tbit/s (1.867 Tbit/s) for transmission over 300 km of SSMF by using a bandwidth of 300 GHz and QPSK modulation on the weaker carriers. For the reported net data rates and spectral efficiencies, we assume a variable overhead of either 7% or 20% for forward- error correction depending on the individual sub-channel quality after fiber transmission.
optical fiber communication conference | 2012
Joerg Pfeifle; Claudius Weimann; Florian Bach; Johann Riemensberger; Klaus Hartinger; David Hillerkuss; Meinert Jordan; Ronald Holtzwarth; Tobias J. Kippenberg; Juerg Leuthold; Wolfgang Freude; Christian Koos
A nonlinear high-Q SiN microresonator is used as a frequency comb generator for data transmission at 170.8 Gbit/s. The main sources for signal impairment are identified. Further dispersion engineering is crucial for Terabit/s transmission.
optical fiber communication conference | 2015
Joerg Pfeifle; Igor Shkarban; Stefan Wolf; Juned N. Kemal; Claudius Weimann; W. Hartmann; Nicolas Chimot; Siddharth Joshi; Kamel Merghem; Anthony Martinez; Marc Weber; A. Ramdane; Francois Lelarge; Wolfgang Freude; Christian Koos
We transmit 18 GBd 16QAM signals on 25 spectral lines of a quantum-dash mode-locked laser diode, achieving a 1.562 Tbit/s aggregate data rate. Phase noise is cancelled by self-homodyne detection using LO tones transmitted with the signal.
optical fiber communication conference | 2013
Joerg Pfeifle; Matthias Lauermann; Daniel Wegner; J. Li; Klaus Hartinger; Victor Brasch; Tobias Herr; David Hillerkuss; Rene Schmogrow; Thomas Schimmel; Ronald Holzwarth; Tobias J. Kippenberg; Juerg Leuthold; Wolfgang Freude; Christian Koos
A high-Q SiN microresonator is used for the first time as an optical source for WDM transmission with advanced modulation formats. We transmit QPSK and 16QAM signals with a total bit rate of 392 Gbit/s.
international conference on transparent optical networks | 2013
Juerg Leuthold; Christian Koos; Wolfgang Freude; Luca Alloatti; Robert Palmer; Dietmar Korn; Joerg Pfeifle; Matthias Lauermann; Raluca Dinu; Silvan Wehrli; Mojca Jazbinsek; Peter Günter; Michael Waldow; Thorsten Wahlbrink; Jens Bolten; Maryse Fournier; J.-M. Fedeli; Wim Bogaerts; Hui Yu
Silicon modulators are maturing and it is anticipated that they are going to substitute state-of-the art modulators. We review current silicon modulator approaches and then discuss the silicon-organic hybrid (SOH) approach in more detail. The SOH approach has recently enabled the operation with an energy consumption of 60 fJ/bit and demonstrated the generation of up to 112 Gbit/s per polarization in a compact silicon modulator of 1.5 mm length.