Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joern E. Schmitz is active.

Publication


Featured researches published by Joern E. Schmitz.


Journal of Virology | 2001

Role of CD8+ Lymphocytes in Control of Simian Immunodeficiency Virus Infection and Resistance to Rechallenge after Transient Early Antiretroviral Treatment

Jeffrey D. Lifson; Jeffrey L. Rossio; Michael Piatak; Thomas Parks; Li Li; Rebecca Kiser; Vicky Coalter; Brad Fisher; Bernard M. Flynn; Susan Czajak; Vanessa M. Hirsch; Keith A. Reimann; Joern E. Schmitz; John Ghrayeb; Norbert Bischofberger; Martin A. Nowak; Ronald C. Desrosiers; Dominik Wodarz

ABSTRACT Transient antiretroviral treatment with tenofovir, (R)-9-(2-phosphonylmethoxypropyl)adenine, begun shortly after inoculation of rhesus macaques with the highly pathogenic simian immunodeficiency virus (SIV) isolate SIVsmE660, facilitated the development of SIV-specific lymphoproliferative responses and sustained effective control of the infection following drug discontinuation. Animals that controlled plasma viremia following transient postinoculation treatment showed substantial resistance to subsequent intravenous rechallenge with homologous (SIVsmE660) and highly heterologous (SIVmac239) SIV isolates, up to more than 1 year later, despite the absence of measurable neutralizing antibody. In some instances, resistance to rechallenge was observed despite the absence of detectable SIV-specific binding antibody and in the face of SIV lymphoproliferative responses that were low or undetectable at the time of challenge. In vivo monoclonal antibody depletion experiments demonstrated a critical role for CD8+ lymphocytes in the control of viral replication; plasma viremia rose by as much as five log units after depletion of CD8+ cells and returned to predepletion levels (as low as <100 copy Eq/ml) as circulating CD8+ cells were restored. The extent of host control of replication of highly pathogenic SIV strains and the level of resistance to heterologous rechallenge achieved following transient postinoculation treatment compared favorably to the results seen after SIVsmE660 and SIVmac239 challenge with many vaccine strategies. This impressive control of viral replication was observed despite comparatively modest measured immune responses, less than those often achieved with vaccination regimens. The results help establish the underlying feasibility of efforts to develop vaccines for the prevention of AIDS, although the exact nature of the protective host responses involved remains to be elucidated.


Nature Medicine | 2005

Smallpox vaccine–induced antibodies are necessary and sufficient for protection against monkeypox virus

Yvette Edghill-Smith; Hana Golding; Jody Manischewitz; Lisa R. King; Dorothy E. Scott; Mike Bray; Aysegul Nalca; Jay W. Hooper; Chris A Whitehouse; Joern E. Schmitz; Keith A. Reimann; Genoveffa Franchini

Vaccination with live vaccinia virus affords long-lasting protection against variola virus, the agent of smallpox. Its mode of protection in humans, however, has not been clearly defined. Here we report that vaccinia-specific B-cell responses are essential for protection of macaques from monkeypox virus, a variola virus ortholog. Antibody-mediated depletion of B cells, but not CD4+ or CD8+ T cells, abrogated vaccine-induced protection from a lethal intravenous challenge with monkeypox virus. In addition, passive transfer of human vaccinia-neutralizing antibodies protected nonimmunized macaques from severe disease. Thus, vaccines able to induce long-lasting protective antibody responses may constitute realistic alternatives to the currently available smallpox vaccine (Dryvax).


The Lancet | 2013

Barriers to a cure for HIV: new ways to target and eradicate HIV-1 reservoirs

Christine Katlama; Steven G. Deeks; Brigitte Autran; Javier Martinez-Picado; Jan van Lunzen; Christine Rouzioux; Michael D. Miller; Stefano Vella; Joern E. Schmitz; Jeffrey D. Ahlers; Douglas D. Richman; Rafick Pierre Sekaly

Antiretroviral therapy for HIV infection needs lifelong access and strict adherence to regimens that are both expensive and associated with toxic effects. A curative intervention will be needed to fully stop the epidemic. The failure to eradicate HIV infection during long-term antiretroviral therapy shows the intrinsic stability of the viral genome in latently infected CD4T cells and other cells, and possibly a sustained low-level viral replication. Heterogeneity in latently infected cell populations and homoeostatic proliferation of infected cells might affect the dynamics of virus production and persistence. Despite potent antiretroviral therapy, chronic immune activation, inflammation, and immune dysfunction persist, and are likely to have important effects on the size and distribution of the viral reservoir. The inability of the immune system to recognise cells harbouring latent virus and to eliminate cells actively producing virus is the biggest challenge to finding a cure. We look at new approaches to unravelling the complex virus-host interactions that lead to persistent infection and latency, and discuss the rationale for combination of novel treatment strategies with available antiretroviral treatment options to cure HIV.


Cell | 2012

Pathogenic Simian Immunodeficiency Virus Infection Is Associated with Expansion of the Enteric Virome

Scott A. Handley; Larissa B. Thackray; Guoyan Zhao; Rachel M. Presti; Andrew D. Miller; Lindsay Droit; Peter Abbink; Lori F. Maxfield; Amal Kambal; Erning Duan; Kelly Stanley; Joshua Kramer; Sheila Macri; Sallie R. Permar; Joern E. Schmitz; Keith G. Mansfield; Jason M. Brenchley; Ronald S. Veazey; Thaddeus S. Stappenbeck; David Wang; Dan H. Barouch; Herbert W. Virgin

Pathogenic simian immunodeficiency virus (SIV) infection is associated with enteropathy, which likely contributes to AIDS progression. To identify candidate etiologies for AIDS enteropathy, we used next-generation sequencing to define the enteric virome during SIV infection in nonhuman primates. Pathogenic, but not nonpathogenic, SIV infection was associated with significant expansion of the enteric virome. We identified at least 32 previously undescribed enteric viruses during pathogenic SIV infection and confirmed their presence by using viral culture and PCR testing. We detected unsuspected mucosal adenovirus infection associated with enteritis as well as parvovirus viremia in animals with advanced AIDS, indicating the pathogenic potential of SIV-associated expansion of the enteric virome. No association between pathogenic SIV infection and the family-level taxonomy of enteric bacteria was detected. Thus, enteric viral infections may contribute to AIDS enteropathy and disease progression. These findings underline the importance of metagenomic analysis of the virome for understanding AIDS pathogenesis.


Journal of Immunology | 2002

Potent CD4+ T Cell Responses Elicited by a Bicistronic HIV-1 DNA Vaccine Expressing gp120 and GM-CSF

Dan H. Barouch; Sampa Santra; Klara Tenner-Racz; Paul Racz; Marcelo J. Kuroda; Joern E. Schmitz; Shawn S. Jackson; Michelle A. Lifton; Dan C. Freed; Helen C. Perry; Mary-Ellen Davies; John W. Shiver; Norman L. Letvin

Virus-specific CD4+ T cell responses have been shown to play a critical role in controlling HIV-1 replication. Candidate HIV-1 vaccines should therefore elicit potent CD4+ as well as CD8+ T cell responses. In this report we investigate the ability of plasmid GM-CSF to augment CD4+ T cell responses elicited by an HIV-1 gp120 DNA vaccine in mice. Coadministration of a plasmid expressing GM-CSF with the gp120 DNA vaccine led to only a marginal increase in gp120-specific splenocyte CD4+ T cell responses. However, immunization with a bicistronic plasmid that coexpressed gp120 and GM-CSF under control of a single promoter led to a dramatic augmentation of vaccine-elicited CD4+ T cell responses, as measured by both cellular proliferation and ELISPOT assays. This augmentation of CD4+ T cell responses was selective, since vaccine-elicited Ab and CD8+ T cell responses were not significantly changed by the addition of GM-CSF. A 100-fold lower dose of the gp120/GM-CSF bicistronic DNA vaccine was required to elicit detectable gp120-specific splenocyte proliferative responses compared with the monocistronic gp120 DNA vaccine. Consistent with these findings, i.m. injection of the gp120/GM-CSF bicistronic DNA vaccine evoked a more extensive cellular infiltrate at the site of inoculation than the monocistronic gp120 DNA vaccine. These results demonstrate that bicistronic DNA vaccines containing GM-CSF elicit remarkably potent CD4+ T cell responses and suggest that optimal Th cell priming requires the precise temporal and spatial codelivery of Ag and GM-CSF.


Nature Medicine | 2009

Adenovirus-specific immunity after immunization with an Ad5 HIV-1 vaccine candidate in humans

Kara L. O'Brien; Jinyan Liu; Sharon L. King; Ying-Hua Sun; Joern E. Schmitz; Michelle A. Lifton; Natalie A. Hutnick; Michael R. Betts; Sheri A. Dubey; Jaap Goudsmit; John W. Shiver; Michael N. Robertson; Danilo R. Casimiro; Dan H. Barouch

The immunologic basis for the potential enhanced HIV-1 acquisition in adenovirus serotype 5 (Ad5)-seropositive individuals who received the Merck recombinant Ad5 HIV-1 vaccine in the STEP study remains unclear. Here we show that baseline Ad5-specific neutralizing antibodies are not correlated with Ad5-specific T lymphocyte responses and that Ad5-seropositive subjects do not develop higher vector-specific cellular immune responses as compared with Ad5-seronegative subjects after vaccination. These findings challenge the hypothesis that activated Ad5-specific T lymphocytes were the cause of the potential enhanced HIV-1 susceptibility in the STEP study.


PLOS Pathogens | 2010

CD8+ Lymphocytes Control Viral Replication in SIVmac239-Infected Rhesus Macaques without Decreasing the Lifespan of Productively Infected Cells

Nichole R. Klatt; Emi Shudo; Alex M. Ortiz; Jessica C. Engram; Mirko Paiardini; Benton Lawson; Michael D. Miller; James G. Else; Ivona Pandrea; Jacob D. Estes; Cristian Apetrei; Joern E. Schmitz; Ruy M. Ribeiro; Alan S. Perelson; Guido Silvestri

While CD8+ T cells are clearly important in controlling virus replication during HIV and SIV infections, the mechanisms underlying this antiviral effect remain poorly understood. In this study, we assessed the in vivo effect of CD8+ lymphocyte depletion on the lifespan of productively infected cells during chronic SIVmac239 infection of rhesus macaques. We treated two groups of animals that were either CD8+ lymphocyte-depleted or controls with antiretroviral therapy, and used mathematical modeling to assess the lifespan of infected cells either in the presence or absence of CD8+ lymphocytes. We found that, in both early (day 57 post-SIV) and late (day 177 post-SIV) chronic SIV infection, depletion of CD8+ lymphocytes did not result in a measurable increase in the lifespan of either short- or long-lived productively infected cells in vivo. This result indicates that the presence of CD8+ lymphocytes does not result in a noticeably shorter lifespan of productively SIV-infected cells, and thus that direct cell killing is unlikely to be the main mechanism underlying the antiviral effect of CD8+ T cells in SIV-infected macaques with high virus replication.


Journal of Virology | 2003

Low Frequency of Cytotoxic T Lymphocytes against the Novel HLA-A*0201-Restricted JC Virus Epitope VP1p36 in Patients with Proven or Possible Progressive Multifocal Leukoencephalopathy

Renaud A. Du Pasquier; Marcelo J. Kuroda; Joern E. Schmitz; Yue Zheng; Kristi L. Martin; Fred W. Peyerl; Michelle A. Lifton; Darci A. Gorgone; Patrick Autissier; Norman L. Letvin; Igor J. Koralnik

ABSTRACT JC virus (JCV)-specific cytotoxic T lymphocytes (CTL) in peripheral blood are associated with a favorable outcome in patients with progressive multifocal leukoencephalopathy (PML). However, the frequency of these cells in the peripheral blood mononuclear cells (PBMC) of PML patients is unknown. To develop a highly sensitive assay for detecting the cellular immune response against this virus, we performed a CTL epitope mapping study of JCV VP1 major capsid protein by using overlapping peptides. A novel HLA-A*0201-restricted epitope, the VP1p36 peptide SITEVECFL, was characterized. The cellular immune response against JCV was assessed in 32 study subjects. By combining the results of the 51Cr release assay on pooled peptides and staining with the HLA-A*0201/JCV VP1p36 tetramer, VP1-specific CTL were detected in 10 of 11 PML survivors (91%) versus only 1 of 11 PML progressors (9%, P = 0.0003). VP1-specific CTL were also detected in two of two patients recently diagnosed with PML and in four of four human immunodeficiency virus-positive patients with possible PML. The frequency of CTL specific for the novel VP1p36 and the previously described VP1p100 epitopes was determined. In two patients, the frequency of CTL specific for the VP1p36 or VP1p100 epitopes, as determined by fresh blood tetramer staining (FBTS), ranged from 1/6,000 to 1/24,000 PBMC. A CTL sorting technique combining tetramer staining and selection with immunomagnetic beads allowed the detection of epitope-specific CTL in two cases that were determined to be negative by FBTS. The phenotype of these CTL in vivo was consistent with activated memory cells. These data suggest that, although present in low numbers, JCV-specific CTL may be of central importance in the containment of JCV spread in immunosuppressed individuals.


Journal of Experimental Medicine | 2009

Profound CD4+/CCR5+ T cell expansion is induced by CD8+ lymphocyte depletion but does not account for accelerated SIV pathogenesis

Afam A. Okoye; Haesun Park; Mukta Rohankhedkar; Lia Coyne-Johnson; Richard Lum; Joshua M. Walker; Shannon L. Planer; Alfred W. Legasse; Andrew W. Sylwester; Michael Piatak; Jeffrey D. Lifson; Donald L. Sodora; Francois Villinger; Michael K. Axthelm; Joern E. Schmitz; Louis J. Picker

Depletion of CD8+ lymphocytes during acute simian immunodeficiency virus (SIV) infection of rhesus macaques (RMs) results in irreversible prolongation of peak-level viral replication and rapid disease progression, consistent with a major role for CD8+ lymphocytes in determining postacute-phase viral replication set points. However, we report that CD8+ lymphocyte depletion is also associated with a dramatic induction of proliferation among CD4+ effector memory T (TEM) cells and, to a lesser extent, transitional memory T (TTrM) cells, raising the question of whether an increased availability of optimal (activated/proliferating), CD4+/CCR5+ SIV “target” cells contributes to this accelerated pathogenesis. In keeping with this, depletion of CD8+ lymphocytes in SIV− RMs led to a sustained increase in the number of potential CD4+ SIV targets, whereas such depletion in acute SIV infection led to increased target cell consumption. However, we found that the excess CD4+ TEM cell proliferation of CD8+ lymphocyte–depleted, acutely SIV-infected RMs was completely inhibited by interleukin (IL)-15 neutralization, and that this inhibition did not abrogate the rapidly progressive infection in these RMs. Moreover, although administration of IL-15 during acute infection induced robust CD4+ TEM and TTrM cell proliferation, it did not recapitulate the viral dynamics of CD8+ lymphocyte depletion. These data suggest that CD8+ lymphocyte function has a larger impact on the outcome of acute SIV infection than the number and/or activation status of target cells available for infection and viral production.


PLOS Pathogens | 2015

Human non-neutralizing HIV-1 envelope monoclonal antibodies limit the number of founder viruses during SHIV mucosal infection in rhesus macaques

Sampa Santra; Georgia D. Tomaras; Ranjit Warrier; Nathan I. Nicely; Hua-Xin Liao; Justin Pollara; Pinghuang Liu; S. Munir Alam; Ruijun Zhang; Sarah L. Cocklin; Xiaoying Shen; Ryan Duffy; Shi-Mao Xia; Robert J. Schutte; Charles W. Pemble; S. Moses Dennison; Hui Li; Andrew Chao; Kora Vidnovic; Abbey Evans; Katja Klein; Amit Kumar; James E. Robinson; Gary Landucci; Donald N. Forthal; David C. Montefiori; Jaranit Kaewkungwal; Sorachai Nitayaphan; Punnee Pitisuttithum; Supachai Rerks-Ngarm

HIV-1 mucosal transmission begins with virus or virus-infected cells moving through mucus across mucosal epithelium to infect CD4+ T cells. Although broadly neutralizing antibodies (bnAbs) are the type of HIV-1 antibodies that are most likely protective, they are not induced with current vaccine candidates. In contrast, antibodies that do not neutralize primary HIV-1 strains in the TZM-bl infection assay are readily induced by current vaccine candidates and have also been implicated as secondary correlates of decreased HIV-1 risk in the RV144 vaccine efficacy trial. Here, we have studied the capacity of anti-Env monoclonal antibodies (mAbs) against either the immunodominant region of gp41 (7B2 IgG1), the first constant region of gp120 (A32 IgG1), or the third variable loop (V3) of gp120 (CH22 IgG1) to modulate in vivo rectal mucosal transmission of a high-dose simian-human immunodeficiency virus (SHIV-BaL) in rhesus macaques. 7B2 IgG1 or A32 IgG1, each containing mutations to enhance Fc function, was administered passively to rhesus macaques but afforded no protection against productive clinical infection while the positive control antibody CH22 IgG1 prevented infection in 4 of 6 animals. Enumeration of transmitted/founder (T/F) viruses revealed that passive infusion of each of the three antibodies significantly reduced the number of T/F genomes. Thus, some antibodies that bind HIV-1 Env but fail to neutralize virus in traditional neutralization assays may limit the number of T/F viruses involved in transmission without leading to enhancement of viral infection. For one of these mAbs, gp41 mAb 7B2, we provide the first co-crystal structure in complex with a common cyclical loop motif demonstrated to be critical for infection by other retroviruses.

Collaboration


Dive into the Joern E. Schmitz's collaboration.

Top Co-Authors

Avatar

Norman L. Letvin

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Michelle A. Lifton

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Barton F. Haynes

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Marcelo J. Kuroda

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Birgit Korioth-Schmitz

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dan H. Barouch

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jaimie D. Sixsmith

Beth Israel Deaconess Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge