Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Birgit Korioth-Schmitz is active.

Publication


Featured researches published by Birgit Korioth-Schmitz.


Journal of Immunology | 2004

Immunogenicity of Recombinant Adenovirus Serotype 35 Vaccine in the Presence of Pre-Existing Anti-Ad5 Immunity

Dan H. Barouch; Maria G. Pau; Jerome Custers; Wouter Koudstaal; Stefan Kostense; Menzo Jans Emco Havenga; Diana M. Truitt; Shawn M. Sumida; Michael G. Kishko; Janelle C. Arthur; Birgit Korioth-Schmitz; Michael H. Newberg; Darci A. Gorgone; Michelle A. Lifton; Dennis Panicali; Gary J. Nabel; Norman L. Letvin; Jaap Goudsmit

The high prevalence of pre-existing immunity to adenovirus serotype 5 (Ad5) in human populations may substantially limit the immunogenicity and clinical utility of recombinant Ad5 vector-based vaccines for HIV-1 and other pathogens. A potential solution to this problem is to use vaccine vectors derived from adenovirus (Ad) serotypes that are rare in humans, such as Ad35. However, cross-reactive immune responses between heterologous Ad serotypes have been described and could prove a major limitation of this strategy. In particular, the extent of immunologic cross-reactivity between Ad5 and Ad35 has not previously been determined. In this study we investigate the impact of pre-existing anti-Ad5 immunity on the immunogenicity of candidate rAd5 and rAd35 vaccines expressing SIV Gag in mice. Anti-Ad5 immunity at levels typically found in humans dramatically blunted the immunogenicity of rAd5-Gag. In contrast, even high levels of anti-Ad5 immunity did not substantially suppress Gag-specific cellular immune responses elicited by rAd35-Gag. Low levels of cross-reactive Ad5/Ad35-specific CD4+ T lymphocyte responses were observed, but were insufficient to suppress vaccine immunogenicity. These data demonstrate the potential utility of Ad35 as a candidate vaccine vector that is minimally suppressed by anti-Ad5 immunity. Moreover, these studies suggest that using Ad vectors derived from immunologically distinct serotypes may be an effective and general strategy to overcome the suppressive effects of pre-existing anti-Ad immunity.


Journal of Virology | 2007

Effect of Preexisting Immunity to Adenovirus Human Serotype 5 Antigens on the Immune Responses of Nonhuman Primates to Vaccine Regimens Based on Human- or Chimpanzee-Derived Adenovirus Vectors

Kimberly McCoy; Birgit Korioth-Schmitz; Marcio O. Lasaro; Scott E. Hensley; Shih-Wen Lin; Yan Li; Wynetta Giles-Davis; Ann Cun; Dongming Zhou; Zhiquan Xiang; Norman L. Letvin; Hildegund C.J. Ertl

ABSTRACT In this study we compared a prime-boost regimen with two serologically distinct replication-defective adenovirus (Ad) vectors derived from chimpanzee serotypes C68 and C1 expressing Gag, Pol, gp140, and Nef of human immunodeficiency virus type 1 with a regimen in which replication-defective Ad vectors of the human serotype 5 (AdHu5) were given twice. Experiments were conducted in rhesus macaques that had or had not been preexposed to antigens of AdHu5. There was no significant difference in T-cell responses tested from peripheral blood of the different groups, although responses were overall highest in nonpreexposed animals immunized with the chimpanzee Ad vectors. Preexisting immunity to AdHu5 completely inhibited induction of transgene product-specific antibodies by the AdHu5 vectors without affecting antibody responses to the chimpanzee vectors. Upon euthanasia, T-cell responses were tested from a number of tissues. Preexisting immunity to AdHu5, commonly found in humans, changed the homing pattern of vaccine-induced T cells. In AdHu5-preexposed animals vaccinated with the chimpanzee Ad vectors, frequencies of transgene-specific T cells were higher in spleens than in blood, and in most preexposed animals vaccinated either with AdHu5 vectors or chimpanzee adenovirus vectors, frequencies of such T cells were exceptionally high in livers. The latter results indicate that analysis of T-cell responses solely from blood mononuclear cells of vaccine recipients may not suffice to compare the potencies of different vaccine regimens.


Journal of Virology | 2004

Heterologous Envelope Immunogens Contribute to AIDS Vaccine Protection in Rhesus Monkeys

Norman L. Letvin; Yue Huang; Bimal K. Chakrabarti; Ling Xu; Michael S. Seaman; Kristin Beaudry; Birgit Korioth-Schmitz; Faye Yu; Daniela Rohne; Kristi L. Martin; Ayako Miura; Wing-Pui Kong; Zhi-Yong Yang; Rebecca Gelman; Olga G. Golubeva; David C. Montefiori; John R. Mascola; Gary J. Nabel

ABSTRACT Because a strategy to elicit broadly neutralizing anti-human immunodeficiency virus type 1 (HIV-1) antibodies has not yet been found, the role of an Env immunogen in HIV-1 vaccine candidates remains undefined. We sought to determine whether an HIV-1 Env immunogen genetically disparate from the Env of the challenge virus can contribute to protective immunity. We vaccinated Indian-origin rhesus monkeys with Gag-Pol-Nef immunogens, alone or in combination with Env immunogens that were either matched or mismatched with the challenge virus. These animals were then challenged with a pathogenic simian-human immunodeficiency virus. The vaccine regimen included a plasmid DNA prime and replication-defective adenoviral vector boost. Vaccine regimens that included the matched or mismatched Env immunogens conferred better protection against CD4+ T-lymphocyte loss than that seen with comparable regimens that did not include Env immunogens. This increment in protective immunity was associated with anamnestic Env-specific cellular immunity that developed in the early days following viral challenge. These data suggest that T-lymphocyte immunity to Env can broaden the protective cellular immune response to HIV despite significant sequence diversity of the strains of the Env immunogens and can contribute to immune protection in this AIDS vaccine model.


Journal of Virology | 2005

A Human T-Cell Leukemia Virus Type 1 Regulatory Element Enhances the Immunogenicity of Human Immunodeficiency Virus Type 1 DNA Vaccines in Mice and Nonhuman Primates

Dan H. Barouch; Zhi Yong Yang; Wing Pui Kong; Birgit Korioth-Schmitz; Shawn M. Sumida; Diana M. Truitt; Michael G. Kishko; Janelle C. Arthur; Ayako Miura; John R. Mascola; Norman L. Letvin; Gary J. Nabel

ABSTRACT Plasmid DNA vaccines elicit potent and protective immune responses in numerous small-animal models of infectious diseases. However, their immunogenicity in primates appears less potent. Here we investigate a novel approach that optimizes regulatory elements in the plasmid backbone to improve the immunogenicity of DNA vaccines. Among various regions analyzed, we found that the addition of a regulatory sequence from the R region of the long terminal repeat from human T-cell leukemia virus type 1 (HTLV-1) to the cytomegalovirus (CMV) enhancer/promoter increased transgene expression 5- to 10-fold and improved cellular immune responses to human immunodeficiency virus type 1 (HIV-1) antigens. In cynomolgus monkeys, DNA vaccines containing the CMV enhancer/promoter with the HTLV-1 R region (CMV/R) induced markedly higher cellular immune responses to HIV-1 Env from clades A, B, and C and to HIV-1 Gag-Pol-Nef compared with the parental DNA vaccines. These data demonstrate that optimization of specific regulatory elements can substantially improve the immunogenicity of DNA vaccines encoding multiple antigens in small animals and in nonhuman primates. This strategy could therefore be explored as a potential method to enhance DNA vaccine immunogenicity in humans.


Journal of Virology | 2007

A replication-competent adenovirus-human immunodeficiency virus (Ad-HIV) tat and Ad-HIV env priming/Tat and envelope protein boosting regimen elicits enhanced protective efficacy against simian/human immunodeficiency virus SHIV89.6P challenge in rhesus macaques.

Thorsten Demberg; Ruth H. Florese; Megan J. Heath; Kay Larsen; Irene Kalisz; V. S. Kalyanaraman; Eun Mi Lee; Ranajit Pal; David Venzon; Richard Grant; L. Jean Patterson; Birgit Korioth-Schmitz; Adam P. Buzby; Dilani Dombagoda; David C. Montefiori; Norman L. Letvin; Aurelio Cafaro; Barbara Ensoli; Marjorie Robert-Guroff

ABSTRACT We previously demonstrated that replication-competent adenovirus (Ad)-simian immunodeficiency virus (SIV) recombinant prime/protein boost regimens elicit potent immunogenicity and strong, durable protection of rhesus macaques against SIVmac251. Additionally, native Tat vaccines have conferred strong protection against simian/human immunodeficiency virus SHIV89.6P challenge of cynomolgus monkeys, while native, inactivated, or vectored Tat vaccines have failed to elicit similar protective efficacy in rhesus macaques. Here we asked if priming rhesus macaques with replicating Ad-human immunodeficiency virus (HIV) tat and boosting with the Tat protein would elicit protection against SHIV89.6P. We also evaluated a Tat/Env regimen, adding an Ad-HIV env recombinant and envelope protein boost to test whether envelope antibodies would augment acute-phase protection. Further, expecting cellular immunity to enhance chronic viremia control, we tested a multigenic group: Ad-HIV tat, -HIV env, -SIV gag, and -SIV nef recombinants and Tat, Env, and Nef proteins. All regimens were immunogenic. A hierarchy was observed in enzyme-linked immunospot responses (with the strongest response for Env, followed by Gag, followed by Nef, followed by Tat) and antibody titers (with the highest titer for Env, followed by Tat, followed by Nef, followed by Gag). Following intravenous SHIV89.6P challenge, all macaques became infected. Compared to controls, no protection was seen in the Tat-only group, confirming previous reports for rhesus macaques. However, the multigenic group blunted acute viremia by approximately 1 log (P = 0.017), and both the multigenic and Tat/Env groups reduced chronic viremia by 3 and 4 logs, respectively, compared to controls (multigenic, P = 0.0003; Tat/Env, P < 0.0001). The strikingly greater reduction in the Tat/Env group than in the multigenic group (P = 0.014) was correlated with Tat and Env binding antibodies. Since prechallenge anti-Env antibodies lacked SHIV89.6P-neutralizing activity, other functional anti-Env and anti-Tat activities are under investigation, as is a possible synergy between the Tat and Env immunogens.


Journal of Virology | 2007

No Evidence for Consistent Virus-Specific Immunity in Simian Immunodeficiency Virus-Exposed, Uninfected Rhesus Monkeys

Norman L. Letvin; Srini S. Rao; Vi Dang; Adam P. Buzby; Birgit Korioth-Schmitz; Dilani Dombagoda; Jenny G. Parvani; Ryon H. Clarke; Liat Bar; Kevin R. Carlson; Pamela A. Kozlowski; Vanessa M. Hirsch; John R. Mascola; Gary J. Nabel

ABSTRACT Defining the immune correlates of the protection against human immunodeficiency virus type 1 (HIV-1) acquisition in individuals who are exposed to HIV-1 but do not become infected may provide important direction for the creation of an HIV-1 vaccine. We have employed the simian immunodeficiency virus (SIV)/rhesus monkey model to determine whether monkeys can be repeatedly exposed to a primate lentivirus by a mucosal route and escape infection and whether virus-specific immune correlates of protection from infection can be identified in uninfected monkeys. Five of 18 rhesus monkeys exposed 18 times by intrarectal inoculation to SIVmac251 or SIVsmE660 were resistant to infection, indicating that the exposed/uninfected phenotype can be reproduced in a nonhuman primate AIDS model. However, routine peripheral blood lymphocyte gamma interferon enzyme-linked immunospot (ELISPOT), tetramer, and intracellular cytokine staining assays, as well as cytokine-augmented ELISPOT and peptide-stimulated tetramer assays, failed to define a systemic antigen-specific cellular immune correlate to this protection. Further, local cell-mediated immunity could not be demonstrated by tetramer assays of these protected monkeys, and local humoral immunity was not associated with protection against acquisition of virus in another cohort of mucosally exposed monkeys. Therefore, resistance to mucosal infection in these monkeys may not be mediated by adaptive virus-specific immune mechanisms. Rather, innate immune mechanisms or an intact epithelial barrier may be responsible for protection against mucosal infection in this population of monkeys.


Journal of Virology | 2003

Cellular Immunity Elicited by Human Immunodeficiency Virus Type 1/ Simian Immunodeficiency Virus DNA Vaccination Does Not Augment the Sterile Protection Afforded by Passive Infusion of Neutralizing Antibodies

John R. Mascola; Mark G. Lewis; Thomas C. VanCott; Gabriela Stiegler; Hermann Katinger; Michael S. Seaman; Kristin Beaudry; Dan H. Barouch; Birgit Korioth-Schmitz; Georgia R. Krivulka; Anna Sambor; Brent Welcher; David C. Montefiori; John W. Shiver; Pascal Poignard; Dennis R. Burton; Norman L. Letvin

ABSTRACT High levels of infused anti-human immunodeficiency virus type 1 (HIV-1) neutralizing monoclonal antibodies (MAbs) can completely protect macaque monkeys against mucosal chimeric simian-human immunodeficiency virus (SHIV) infection. Antibody levels below the protective threshold do not prevent infection but can substantially reduce plasma viremia. To assess if HIV-1/SIV-specific cellular immunity could combine with antibodies to produce sterile protection, we studied the effect of a suboptimal infusion of anti-HIV-1 neutralizing antibodies in macaques with active cellular immunity induced by interleukin-2 (IL-2)-adjuvanted DNA immunization. Twenty female macaques were divided into four groups: (i) DNA immunization plus irrelevant antibody, (ii) DNA immunization plus infusion of neutralizing MAbs 2F5 and 2G12, (iii) sham DNA plus 2F5 and 2G12, and (iv) sham DNA plus irrelevant antibody. DNA-immunized monkeys developed CD4 and CD8 T-cell responses as measured by epitope-specific tetramer staining and by pooled peptide ELISPOT assays for gamma interferon-secreting cells. After vaginal challenge, DNA-immunized animals that received irrelevant antibody became SHIV infected but displayed lower plasma viremia than control animals. Complete protection against SHIV challenge occurred in three animals that received sham DNA plus MAbs 2F5 and 2G12 and in two animals that received the DNA vaccine plus MAbs 2F5 and 2G12. Thus, although DNA immunization produced robust HIV-specific T-cell responses, we were unable to demonstrate that these responses contributed to the sterile protection mediated by passive infusion of neutralizing antibodies. These data suggest that although effector T cells can limit viral replication, they are not able to assist humoral immunity to prevent the establishment of initial infection.


Journal of Virology | 2008

Simian Immunodeficiency Virus (SIV)-Specific CD8+ T-Cell Responses in Vervet African Green Monkeys Chronically Infected with SIVagm

Roland C. Zahn; Melisa Rett; Birgit Korioth-Schmitz; Yue Sun; Adam P. Buzby; Simoy Goldstein; Charles R. Brown; Russell Byrum; Gordon J. Freeman; Norman L. Letvin; Vanessa M. Hirsch; Jörn E. Schmitz

ABSTRACT African green monkeys (AGM) do not develop overt signs of disease following simian immunodeficiency virus (SIV) infection. While it is still unknown how natural hosts like AGM can cope with this lentivirus infection, a large number of investigations have shown that CD8+ T-cell responses are critical for the containment of AIDS viruses in humans and Asian nonhuman primates. Here we have compared the phenotypes of T-cell subsets and magnitudes of SIV-specific CD8+ T-cell responses in vervet AGM chronically infected with SIVagm and rhesus monkeys (RM) infected with SIVmac. In comparison to RM, vervet AGM exhibited weaker signs of immune activation and associated proliferation of CD8+ T cells as detected by granzyme B, Ki-67, and programmed death 1 staining. By gamma interferon enzyme-linked immunospot assay and intracellular cytokine staining, SIV Gag- and Env-specific immune responses were detectable at variable but lower levels in vervet AGM than in RM. These observations demonstrate that natural hosts like SIV-infected vervet AGM develop SIV-specific T-cell responses, but the disease-free course of infection does not depend on the generation of robust CD8+ T-cell responses.


Journal of Virology | 2009

Recombinant Mycobacterium bovis BCG Prime-Recombinant Adenovirus Boost Vaccination in Rhesus Monkeys Elicits Robust Polyfunctional Simian Immunodeficiency Virus-Specific T-Cell Responses

Mark J. Cayabyab; Birgit Korioth-Schmitz; Yue Sun; Angela Carville; Harikrishnan Balachandran; Ayako Miura; Kevin R. Carlson; Adam P. Buzby; Barton F. Haynes; William R. Jacobs; Norman L. Letvin

ABSTRACT While mycobacteria have been proposed as vaccine vectors because of their persistence and safety, little has been done systematically to optimize their immunogenicity in nonhuman primates. We successfully generated recombinant Mycobacterium bovis BCG (rBCG) expressing simian immunodeficiency virus (SIV) Gag and Pol as multigenic, nonintegrating vectors, but rBCG-expressing SIV Env was unstable. A dose and route determination study in rhesus monkeys revealed that intramuscular administration of rBCG was associated with local reactogenicity, whereas intravenous and intradermal administration of 106 to 108 CFU of rBCG was well tolerated. After single or repeat rBCG inoculations, monkeys developed high-frequency gamma interferon enzyme-linked immunospot responses against BCG purified protein derivative. However, the same animals developed only modest SIV-specific CD8+ T-cell responses. Nevertheless, high-frequency SIV-specific cellular responses were observed in the rBCG-primed monkeys after boosting with recombinant adenovirus 5 (rAd5) expressing the SIV antigens. These cellular responses were of greater magnitude and more persistent than those generated after vaccination with rAd5 alone. The vaccine-elicited cellular responses were predominantly polyfunctional CD8+ T cells. These findings support the further exploration of mycobacteria as priming vaccine vectors.


Vaccine | 2009

Heterologous prime/boost immunizations of rhesus monkeys using chimpanzee adenovirus vectors.

Sampa Santra; Yue Sun; Birgit Korioth-Schmitz; Julie C. Fitzgerald; Cherie Charbonneau; Giannina Santos; Michael S. Seaman; Sarah J. Ratcliffe; David C. Montefiori; Gary J. Nabel; Hildegund C. J. Ertl; Norman L. Letvin

Pre-existing immunity to human adenovirus serotype 5 (AdHu5) has been shown to suppress the immunogenicity of recombinant Ad5 (rAdHu5) vector-based vaccines for human immunodeficiency virus type 1 (HIV-1) in both preclinical studies and clinical trials. As a potential solution to this problem we developed adenovirus vaccine vectors of chimpanzee origin. In the present study we assessed the immunogenicity of various chimpanzee adenovirus vectors in a prime/boost regimen to HIV-1 envelope and SIV Gag-Pol in rhesus monkeys and their ability to protect against pathogenic viral challenge. Although rAdHu5-primed monkeys had higher magnitude T cell responses than rAdC7 or rAdC68 prior to challenge, the rAdC7-rAdC1/C5 and rAdHu5-rAdC1/C5 immunizations resulted in comparable magnitude recall cellular immune responses and comparable level of control of viremia post-challenge.

Collaboration


Dive into the Birgit Korioth-Schmitz's collaboration.

Top Co-Authors

Avatar

Norman L. Letvin

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Barton F. Haynes

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Joern E. Schmitz

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jörn E. Schmitz

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Michelle A. Lifton

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ayako Miura

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Dan H. Barouch

Beth Israel Deaconess Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge