Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Johahn Leung is active.

Publication


Featured researches published by Johahn Leung.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Compression of auditory space during rapid head turns

Johahn Leung; David Alais; Simon Carlile

Studies of spatial perception during visual saccades have demonstrated compressions of visual space around the saccade target. Here we psychophysically investigated perception of auditory space during rapid head turns, focusing on the “perisaccadic” interval. Using separate perceptual and behavioral response measures we show that spatial compression also occurs for rapid head movements, with the auditory spatial representation compressing by up to 50%. Similar to observations in the visual system, this occurred only when spatial locations were measured by using a perceptual response; it was absent for the behavioral measure involving a nose-pointing task. These findings parallel those observed in vision during saccades and suggest that a common neural mechanism may subserve these distortions of space in each modality.


Journal of Speech Language and Hearing Research | 2014

Attention, Memory, and Auditory Processing in 10- to 15-Year-Old Children With Listening Difficulties

Mridula Sharma; Imran Dhamani; Johahn Leung; Simon Carlile

PURPOSE The aim of this study was to examine attention, memory, and auditory processing in children with reported listening difficulty in noise (LDN) despite having clinically normal hearing. METHOD Twenty-one children with LDN and 15 children with no listening concerns (controls) participated. The clinically normed auditory processing tests included the Frequency/Pitch Pattern Test (FPT; Musiek, 2002), the Dichotic Digits Test (Musiek, 1983), the Listening in Spatialized Noise-Sentences (LiSN-S) test (Dillon, Cameron, Glyde, Wilson, & Tomlin, 2012), gap detection in noise (Baker, Jayewardene, Sayle, & Saeed, 2008), and masking level difference (MLD; Wilson, Moncrieff, Townsend, & Pillion, 2003). Also included were research-based psychoacoustic tasks, such as auditory stream segregation, localization, sinusoidal amplitude modulation (SAM), and fine structure perception. All were also evaluated on attention and memory test batteries. RESULTS The LDN group was significantly slower switching their auditory attention and had poorer inhibitory control. Additionally, the group mean results showed significantly poorer performance on FPT, MLD, 4-Hz SAM, and memory tests. Close inspection of the individual data revealed that only 5 participants (out of 21) in the LDN group showed significantly poor performance on FPT compared with clinical norms. Further testing revealed the frequency discrimination of these 5 children to be significantly impaired. CONCLUSION Thus, the LDN group showed deficits in attention switching and inhibitory control, whereas only a subset of these participants demonstrated an additional frequency resolution deficit.


Trends in hearing | 2016

The Perception of Auditory Motion

Simon Carlile; Johahn Leung

The growing availability of efficient and relatively inexpensive virtual auditory display technology has provided new research platforms to explore the perception of auditory motion. At the same time, deployment of these technologies in command and control as well as in entertainment roles is generating an increasing need to better understand the complex processes underlying auditory motion perception. This is a particularly challenging processing feat because it involves the rapid deconvolution of the relative change in the locations of sound sources produced by rotational and translations of the head in space (self-motion) to enable the perception of actual source motion. The fact that we perceive our auditory world to be stable despite almost continual movement of the head demonstrates the efficiency and effectiveness of this process. This review examines the acoustical basis of auditory motion perception and a wide range of psychophysical, electrophysiological, and cortical imaging studies that have probed the limits and possible mechanisms underlying this perception.


Scientific Reports | 2013

Switch Attention to Listen

Imran Dhamani; Johahn Leung; Simon Carlile; Mridula Sharma

The aim of this research was to evaluate the ability to switch attention and selectively attend to relevant information in children (10–15 years) with persistent listening difficulties in noisy environments. A wide battery of clinical tests indicated that children with complaints of listening difficulties had otherwise normal hearing sensitivity and auditory processing skills. Here we show that these children are markedly slower to switch their attention compared to their age-matched peers. The results suggest poor attention switching, lack of response inhibition and/or poor listening effort consistent with a predominantly top-down (central) information processing deficit. A deficit in the ability to switch attention across talkers would provide the basis for this otherwise hidden listening disability, especially in noisy environments involving multiple talkers such as classrooms.


Journal of the Renin-Angiotensin-Aldosterone System | 2015

Retinal ganglion cell neuroprotection by an angiotensin II blocker in an ex vivo retinal explant model

Andrew White; Janosch P. Heller; Johahn Leung; Alessia Tassoni; Keith R. Martin

Purpose: An ex vivo organotypic retinal explant model was developed to examine retinal survival mechanisms relevant to glaucoma mediated by the renin angiotensin system in the rodent eye. Methods: Eyes from adult Sprague Dawley rats were enucleated immediately post-mortem and used to make four retinal explants per eye. Explants were treated either with irbesartan (10 µM), vehicle or angiotensin II (2 μM) for four days. Retinal ganglion cell density was estimated by βIII tubulin immunohistochemistry. Live imaging of superoxide formation with dihydroethidium (DHE) was performed. Protein expression was determined by Western blotting, and mRNA expression was determined by RT-PCR. Results: Irbesartan (10 µM) almost doubled ganglion cell survival after four days. Angiotensin II (2 µM) reduced cell survival by 40%. Sholl analysis suggested that irbesartan improved ganglion cell dendritic arborisation compared to control and angiotensin II reduced it. Angiotensin-treated explants showed an intense DHE fluorescence not seen in irbesartan-treated explants. Analysis of protein and mRNA expression determined that the angiotensin II receptor At1R was implicated in modulation of the NADPH-dependent pathway of superoxide generation. Conclusion: Angiotensin II blockers protect retinal ganglion cells in this model and may be worth further investigation as a neuroprotective treatment in models of eye disease.


Perception | 2009

Discriminating Audiovisual Speed: Optimal Integration of Speed Defaults to Probability Summation When Component Reliabilities Diverge

Adam Bentvelzen; Johahn Leung; David Alais

We investigated audiovisual speed perception to test the maximum-likelihood-estimation (MLE) model of multisensory integration. According to MLE, audiovisual speed perception will be based on a weighted average of visual and auditory speed estimates, with each component weighted by its inverse variance, a statistically optimal combination that produces a fused estimate with minimised variance and thereby affords maximal discrimination. We use virtual auditory space to create ecologically valid auditory motion, together with visual apparent motion around an array of 63 LEDs. To degrade the usual dominance of vision over audition, we added positional jitter to the motion sequences, and also measured peripheral trajectories. Both factors degraded visual speed discrimination, while auditory speed perception was unaffected by trajectory location. In the bimodal conditions, a speed conflict was introduced (48° versus 60° s−1) and two measures were taken: perceived audiovisual speed, and the precision (variability) of audiovisual speed discrimination. These measures showed only a weak tendency to follow MLE predictions. However, splitting the data into two groups based on whether the unimodal component weights were similar or disparate revealed interesting findings: similarly weighted components were integrated in a manner closely matching MLE predictions, while dissimilarity weighted components (greater than 3: 1 difference) were integrated according to probability-summation predictions. These results suggest that different multisensory integration strategies may be implemented depending on relative component reliabilities, with MLE integration vetoed when component weights are highly disparate.


The Journal of Neuroscience | 2017

Linear summation of repulsive and attractive serial dependencies: orientation and motion dependencies sum in motion perception

David Alais; Johahn Leung; E. van der Burg

Recent work from several groups has shown that perception of various visual attributes in human observers at a given moment is biased toward what was recently seen. This positive serial dependency is a kind of temporal averaging that exploits short-term correlations in visual scenes to reduce noise and stabilize perception. To date, this stabilizing “continuity field” has been demonstrated on stable visual attributes such as orientation and face identity, yet it would be counterproductive to apply it to dynamic attributes in which change sensitivity is needed. Here, we tested this using motion direction discrimination and predict a negative perceptual dependency: a contrastive relationship that enhances sensitivity to change. Surprisingly, our data showed a cubic-like pattern of dependencies with positive and negative components. By interleaving various stimulus combinations, we separated the components and isolated a positive perceptual dependency for motion and a negative dependency for orientation. A weighted linear sum of the separate dependencies described the original cubic pattern well. The positive dependency for motion shows an integrative perceptual effect and was unexpected, although it is consistent with work on motion priming. These findings suggest that a perception-stabilizing continuity field occurs pervasively, occurring even when it obscures sensitivity to dynamic stimuli. SIGNIFICANCE STATEMENT Recent studies show that visual perception at a given moment is not entirely veridical, but rather biased toward recently seen stimuli: a positive serial dependency. This temporal smoothing process helps perceptual continuity by preserving stable aspects of the visual scene over time, yet, for dynamic stimuli, temporal smoothing would blur dynamics and reduce sensitivity to change. We tested whether this process is selective for stable attributes by examining dependencies in motion perception. We found a clear positive dependency for motion, suggesting that positive perceptual dependencies are pervasive. We also found a concurrent negative (contrastive) dependency for orientation. Both dependencies combined linearly to determine perception, showing that the brain can calculate contrastive and integrative dependencies simultaneously from recent stimulus history when making perceptual decisions.


Journal of the Acoustical Society of America | 2010

Phase effects on the perceived elevation of complex tones

William M. Hartmann; Virginia Best; Johahn Leung; Simon Carlile

Free-field source localization experiments with 30 source locations, symmetrically distributed in azimuth, elevation, and front-back location, were performed with periodic tones having different phase relationships among their components. Although the amplitude spectra were the same for these different kinds of stimuli, the tones with certain phase relationships were successfully localized while the tones with other phases led to large elevation errors and front-back reversals, normally growing with stimulus level. The results show that it is not enough to have a smooth, broadband, long-term signal spectrum for successful sagittal-plane localization. Instead, temporal factors are important. A model calculation investigates the idea that the tonotopic details that mediate localization need to be simultaneously, or almost simultaneously, accessible in the auditory system in order to achieve normal elevation perception. A qualitative model based on lateral inhibition seems capable in principle of accounting for both the phase effects and level effects.


PLOS ONE | 2014

Discrimination Contours for Moving Sounds Reveal Duration and Distance Cues Dominate Auditory Speed Perception

Thomas Charles Augustus Freeman; Johahn Leung; Ella Wufong; Emily Orchard-Mills; Simon Carlile; David Alais

Evidence that the auditory system contains specialised motion detectors is mixed. Many psychophysical studies confound speed cues with distance and duration cues and present sound sources that do not appear to move in external space. Here we use the ‘discrimination contours’ technique to probe the probabilistic combination of speed, distance and duration for stimuli moving in a horizontal arc around the listener in virtual auditory space. The technique produces a set of motion discrimination thresholds that define a contour in the distance-duration plane for different combination of the three cues, based on a 3-interval oddity task. The orientation of the contour (typically elliptical in shape) reveals which cue or combination of cues dominates. If the auditory system contains specialised motion detectors, stimuli moving over different distances and durations but defining the same speed should be more difficult to discriminate. The resulting discrimination contours should therefore be oriented obliquely along iso-speed lines within the distance-duration plane. However, we found that over a wide range of speeds, distances and durations, the ellipses aligned with distance-duration axes and were stretched vertically, suggesting that listeners were most sensitive to duration. A second experiment showed that listeners were able to make speed judgements when distance and duration cues were degraded by noise, but that performance was worse. Our results therefore suggest that speed is not a primary cue to motion in the auditory system, but that listeners are able to use speed to make discrimination judgements when distance and duration cues are unreliable.


Scientific Reports | 2016

Sensitivity to Auditory Velocity Contrast

Shannon M. Locke; Johahn Leung; Simon Carlile

A natural auditory scene often contains sound moving at varying velocities. Using a velocity contrast paradigm, we compared sensitivity to velocity changes between continuous and discontinuous trajectories. Subjects compared the velocities of two stimulus intervals that moved along a single trajectory, with and without a 1 second inter stimulus interval (ISI). We found thresholds were threefold larger for velocity increases in the instantaneous velocity change condition, as compared to instantaneous velocity decreases or thresholds for the delayed velocity transition condition. This result cannot be explained by the current static “snapshot” model of auditory motion perception and suggest a continuous process where the percept of velocity is influenced by previous history of stimulation.

Collaboration


Dive into the Johahn Leung's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ella Wufong

University of Western Sydney

View shared research outputs
Top Co-Authors

Avatar

Imran Dhamani

Cooperative Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge