Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Johan Trygg is active.

Publication


Featured researches published by Johan Trygg.


Analytica Chimica Acta | 2010

Chemometrics in metabolomics--a review in human disease diagnosis.

Rasmus Madsen; Torbjörn Lundstedt; Johan Trygg

Metabolomics is a post genomic research field concerned with developing methods for analysis of low molecular weight compounds in biological systems, such as cells, organs or organisms. Analyzing metabolic differences between unperturbed and perturbed systems, such as healthy volunteers and patients with a disease, can lead to insights into the underlying pathology. In metabolomics analysis, large amounts of data are routinely produced in order to characterize samples. The use of multivariate data analysis techniques and chemometrics is a commonly used strategy for obtaining reliable results. Metabolomics have been applied in different fields such as disease diagnosis, toxicology, plant science and pharmaceutical and environmental research. In this review we take a closer look at the chemometric methods used and the available results within the field of disease diagnosis. We will first present some current strategies for performing metabolomics studies, especially regarding disease diagnosis. The main focus will be on data analysis strategies and validation of multivariate models, since there are many pitfalls in this regard. Further, we highlight the most interesting metabolomics publications and discuss these in detail; additional studies are mentioned as a reference for the interested reader. A general trend is an increased focus on biological interpretation rather than merely the ability to classify samples. In the conclusions, the general trends and some recommendations for improving metabolomics data analysis are provided.


Metabolomics | 2007

Proposed minimum reporting standards for data analysis in metabolomics

Royston Goodacre; David Broadhurst; Age K. Smilde; Bruce S. Kristal; J. David Baker; Richard D. Beger; Conrad Bessant; Susan C. Connor; Giorgio Capuani; Andrew Craig; Timothy M. D. Ebbels; Douglas B. Kell; Cesare Manetti; Jack Newton; Giovanni Paternostro; Ray L. Somorjai; Michael Sjöström; Johan Trygg; Florian Wulfert

The goal of this group is to define the reporting requirements associated with the statistical analysis (including univariate, multivariate, informatics, machine learning etc.) of metabolite data with respect to other measured/collected experimental data (often called meta-data). These definitions will embrace as many aspects of a complete metabolomics study as possible at this time. In chronological order this will include: Experimental Design, both in terms of sample collection/matching, and data acquisition scheduling of samples through whichever spectroscopic technology used; Deconvolution (if required); Pre-processing, for example, data cleaning, outlier detection, row/column scaling, or other transformations; Definition and parameterization of subsequent visualizations and Statistical/Machine learning Methods applied to the dataset; If required, a clear definition of the Model Validation Scheme used (including how data are split into training/validation/test sets); Formal indication on whether the data analysis has been Independently Tested (either by experimental reproduction, or blind hold out test set). Finally, data interpretation and the visual representations and hypotheses obtained from the data analyses.


Chemometrics and Intelligent Laboratory Systems | 1998

PLS REGRESSION ON WAVELET COMPRESSED NIR SPECTRA

Johan Trygg; Svante Wold

Abstract Today, good compression methods are more and more needed, due to the ever increasing amount of data that is being collected. The mere thought of the computational power demanded to calculate a regression model on a large data set with many thousands of variables can often be depressing. This paper should be treated as an introduction to how the discrete wavelet transform can be used in multivariate calibration. It will be shown that by using the fast wavelet transform on individual signals as a preprocessing method in regression modelling on near-infrared (NIR) spectra, good compression is achieved with almost no loss of information. No loss of information means that the predictive ability and the diagnostics, together with the graphical displays of the data compressed regression model, are basically the same as for the original uncompressed regression model. The regression method used here is Partial Least Squares, PLS. In a NIR-VIS example, compression of the data set to 3% of its original size was achieved.


BMC Plant Biology | 2008

LAMINA: a tool for rapid quantification of leaf size and shape parameters

Max Bylesjö; Vincent Segura; Raju Y. Soolanayakanahally; Anne M. Rae; Johan Trygg; Petter Gustafsson; Stefan Jansson; Nathaniel R. Street

BackgroundAn increased understanding of leaf area development is important in a number of fields: in food and non-food crops, for example short rotation forestry as a biofuels feedstock, leaf area is intricately linked to biomass productivity; in paleontology leaf shape characteristics are used to reconstruct paleoclimate history. Such fields require measurement of large collections of leaves, with resulting conclusions being highly influenced by the accuracy of the phenotypic measurement process.ResultsWe have developed LAMINA (Leaf shApe deterMINAtion), a new tool for the automated analysis of images of leaves. LAMINA has been designed to provide classical indicators of leaf shape (blade dimensions) and size (area), which are typically required for correlation analysis to biomass productivity, as well as measures that indicate asymmetry in leaf shape, leaf serration traits, and measures of herbivory damage (missing leaf area). In order to allow Principal Component Analysis (PCA) to be performed, the location of a chosen number of equally spaced boundary coordinates can optionally be returned.ConclusionWe demonstrate the use of the software on a set of 500 scanned images, each containing multiple leaves, collected from a common garden experiment containing 116 clones of Populus tremula (European trembling aspen) that are being used for association mapping, as well as examples of leaves from other species. We show that the software provides an efficient and accurate means of analysing leaf area in large datasets in an automated or semi-automated work flow.


Analytica Chimica Acta | 2000

Orthogonal signal correction, wavelet analysis, and multivariate calibration of complicated process fluorescence data

Lennart Eriksson; Johan Trygg; Erik Johansson; Rasmus Bro; Svante Wold

In this paper, multivariate calibration of complicated process fluorescence data is presented. Two data sets related to the production of white sugar are investigated. The first data set comprises 106 observations and 571 spectral variables, and the second data set 268 observations and 3997 spectral variables. In both applications, a single response, ash content, is modelled and predicted as a function of the spectral variables. Both data sets contain certain features making multivariate calibration efforts non-trivial. The objective is to show how principal component analysis (PCA) and partial least squares (PLS) regression can be used to overview the data sets and to establish predictively sound regression models. It is shown how a recently developed technique for signal filtering, orthogonal signal correction (OSC), can be applied in multivariate calibration to enhance predictive power. In addition, signal compression is tested on the larger data set using wavelet analysis. It is demonstrated that a compression down to 4% of the original matrix size - in the variable direction - is possible without loss of predictive power. It is concluded that the combination of OSC for pre-processing and wavelet analysis for compression of spectral data is promising for future use.


Arthritis Research & Therapy | 2011

Diagnostic properties of metabolic perturbations in rheumatoid arthritis

Rasmus Madsen; Torbjörn Lundstedt; Jon Gabrielsson; Carl-Johan Sennbro; Gerd-Marie Alenius; Thomas Moritz; Solbritt Rantapää-Dahlqvist; Johan Trygg

IntroductionThe aim of this study was to assess the feasibility of diagnosing early rheumatoid arthritis (RA) by measuring selected metabolic biomarkers.MethodsWe compared the metabolic profile of patients with RA with that of healthy controls and patients with psoriatic arthritis (PsoA). The metabolites were measured using two different chromatography-mass spectrometry platforms, thereby giving a broad overview of serum metabolites. The metabolic profiles of patient and control groups were compared using multivariate statistical analysis. The findings were validated in a follow-up study of RA patients and healthy volunteers.ResultsRA patients were diagnosed with a sensitivity of 93% and a specificity of 70% in a validation study using detection of 52 metabolites. Patients with RA or PsoA could be distinguished with a sensitivity of 90% and a specificity of 94%. Glyceric acid, D-ribofuranose and hypoxanthine were increased in RA patients, whereas histidine, threonic acid, methionine, cholesterol, asparagine and threonine were all decreased compared with healthy controls.ConclusionsMetabolite profiling (metabolomics) is a potentially useful technique for diagnosing RA. The predictive value was without regard to the presence of antibodies against cyclic citrullinated peptides.


BMC Bioinformatics | 2008

K-OPLS package: Kernel-based orthogonal projections to latent structures for prediction and interpretation in feature space

Max Bylesjö; Mattias Rantalainen; Jeremy K. Nicholson; Elaine Holmes; Johan Trygg

BackgroundKernel-based classification and regression methods have been successfully applied to modelling a wide variety of biological data. The Kernel-based Orthogonal Projections to Latent Structures (K-OPLS) method offers unique properties facilitating separate modelling of predictive variation and structured noise in the feature space. While providing prediction results similar to other kernel-based methods, K-OPLS features enhanced interpretational capabilities; allowing detection of unanticipated systematic variation in the data such as instrumental drift, batch variability or unexpected biological variation.ResultsWe demonstrate an implementation of the K-OPLS algorithm for MATLAB and R, licensed under the GNU GPL and available at http://www.sourceforge.net/projects/kopls/. The package includes essential functionality and documentation for model evaluation (using cross-validation), training and prediction of future samples. Incorporated is also a set of diagnostic tools and plot functions to simplify the visualisation of data, e.g. for detecting trends or for identification of outlying samples. The utility of the software package is demonstrated by means of a metabolic profiling data set from a biological study of hybrid aspen.ConclusionThe properties of the K-OPLS method are well suited for analysis of biological data, which in conjunction with the availability of the outlined open-source package provides a comprehensive solution for kernel-based analysis in bioinformatics applications.


Journal of Proteome Research | 2009

Integrated analysis of transcript, protein and metabolite data to study lignin biosynthesis in hybrid aspen.

Max Bylesjö; Robert Nilsson; Vaibhav Srivastava; Andreas Grönlund; Annika I. Johansson; Steffan Jansson; Jan Karlsson; Thomas Moritz; Gunnar Wingsle; Johan Trygg

Tree biotechnology will soon reach a mature state where it will influence the overall supply of fiber, energy and wood products. We are now ready to make the transition from identifying candidate genes, controlling important biological processes, to discovering the detailed molecular function of these genes on a broader, more holistic, systems biology level. In this paper, a strategy is outlined for informative data generation and integrated modeling of systematic changes in transcript, protein and metabolite profiles measured from hybrid aspen samples. The aim is to study characteristics of common changes in relation to genotype-specific perturbations affecting the lignin biosynthesis and growth. We show that a considerable part of the systematic effects in the system can be tracked across all platforms and that the approach has a high potential value in functional characterization of candidate genes.


Journal of Chemometrics | 2011

OnPLS—a novel multiblock method for the modelling of predictive and orthogonal variation

Tommy Löfstedt; Johan Trygg

This paper presents a new multiblock analysis method called OnPLS, a general extension of O2PLS to the multiblock case. The proposed method is equivalent to O2PLS in cases involving only two matrices, but generalises to cases involving more than two matrices without giving preference to any particular matrix: the method is fully symmetric. OnPLS extracts a minimal number of globally predictive components that exhibit maximal covariance and correlation. Furthermore, the method can be used to study orthogonal variation, i.e. local phenomena captured in the data that are specific to individual combinations of matrices or to individual matrices. The methods utility was demonstrated by its application to three synthetic data sets. It was shown that OnPLS affords a reduced number of globally predictive components and increased intercorrelations of scores, and that it greatly facilitates interpretation of the predictive model. Copyright


PLOS ONE | 2013

Individual variation in lipidomic profiles of healthy subjects in response to omega-3 Fatty acids.

Malin L. Nording; Jun Yang; Katrin Georgi; Christine Hegedus Karbowski; J. Bruce German; Robert H. Weiss; Ronald J. Hogg; Johan Trygg; Bruce D. Hammock; Angela M. Zivkovic

Introduction Conflicting findings in both interventional and observational studies have resulted in a lack of consensus on the benefits of ω3 fatty acids in reducing disease risk. This may be due to individual variability in response. We used a multi-platform lipidomic approach to investigate both the consistent and inconsistent responses of individuals comprehensively to a defined ω3 intervention. Methods The lipidomic profile including fatty acids, lipid classes, lipoprotein distribution, and oxylipins was examined multi- and uni-variately in 12 healthy subjects pre vs. post six weeks of ω3 fatty acids (1.9 g/d eicosapentaenoic acid [EPA] and 1.5 g/d docosahexaenoic acid [DHA]). Results Total lipidomic and oxylipin profiles were significantly different pre vs. post treatment across all subjects (p=0.00007 and p=0.00002 respectively). There was a strong correlation between oxylipin profiles and EPA and DHA incorporated into different lipid classes (r2=0.93). However, strikingly divergent responses among individuals were also observed. Both ω3 and ω6 fatty acid metabolites displayed a large degree of variation among the subjects. For example, in half of the subjects, two arachidonic acid cyclooxygenase products, prostaglandin E2 (PGE2) and thromboxane B2 (TXB2), and a lipoxygenase product, 12-hydroxyeicosatetraenoic acid (12-HETE) significantly decreased post intervention, whereas in the other half they either did not change or increased. The EPA lipoxygenase metabolite 12-hydroxyeicosapentaenoic acid (12-HEPE) varied among subjects from an 82% decrease to a 5,000% increase. Conclusions Our results show that certain defined responses to ω3 fatty acid intervention were consistent across all subjects. However, there was also a high degree of inter-individual variability in certain aspects of lipid metabolism. This lipidomic based phenotyping approach demonstrated that individual responsiveness to ω3 fatty acids is highly variable and measurable, and could be used as a means to assess the effectiveness of ω3 interventions in modifying disease risk and determining metabolic phenotype.

Collaboration


Dive into the Johan Trygg's collaboration.

Top Co-Authors

Avatar

Thomas Moritz

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge