Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Johanna Andrae is active.

Publication


Featured researches published by Johanna Andrae.


Genes & Development | 2008

Role of platelet-derived growth factors in physiology and medicine

Johanna Andrae; Radiosa Gallini; Christer Betsholtz

Platelet-derived growth factors (PDGFs) and their receptors (PDGFRs) have served as prototypes for growth factor and receptor tyrosine kinase function for more than 25 years. Studies of PDGFs and PDGFRs in animal development have revealed roles for PDGFR-alpha signaling in gastrulation and in the development of the cranial and cardiac neural crest, gonads, lung, intestine, skin, CNS, and skeleton. Similarly, roles for PDGFR-beta signaling have been established in blood vessel formation and early hematopoiesis. PDGF signaling is implicated in a range of diseases. Autocrine activation of PDGF signaling pathways is involved in certain gliomas, sarcomas, and leukemias. Paracrine PDGF signaling is commonly observed in epithelial cancers, where it triggers stromal recruitment and may be involved in epithelial-mesenchymal transition, thereby affecting tumor growth, angiogenesis, invasion, and metastasis. PDGFs drive pathological mesenchymal responses in vascular disorders such as atherosclerosis, restenosis, pulmonary hypertension, and retinal diseases, as well as in fibrotic diseases, including pulmonary fibrosis, liver cirrhosis, scleroderma, glomerulosclerosis, and cardiac fibrosis. We review basic aspects of the PDGF ligands and receptors, their developmental and pathological functions, principles of their pharmacological inhibition, and results using PDGF pathway-inhibitory or stimulatory drugs in preclinical and clinical contexts.


Nature Medicine | 2008

Activation of PDGF-CC by tissue plasminogen activator impairs blood-brain barrier integrity during ischemic stroke

Enming J. Su; Linda Fredriksson; Melissa Geyer; Erika Folestad; Jacqueline M. Cale; Johanna Andrae; Yamei Gao; Kristian Pietras; Kris Mann; Manuel Yepes; Dudley K. Strickland; Christer Betsholtz; Ulf Eriksson; Daniel A. Lawrence

Thrombolytic treatment of ischemic stroke with tissue plasminogen activator (tPA) is markedly limited owing to concerns about hemorrhagic complications and the requirement that tPA be administered within 3 h of symptoms. Here we report that tPA activation of latent platelet-derived growth factor-CC (PDGF-CC) may explain these limitations. Intraventricular injection of tPA or active PDGF-CC, in the absence of ischemia, leads to significant increases in cerebrovascular permeability. In contrast, co-injection of neutralizing antibodies to PDGF-CC with tPA blocks this increased permeability, indicating that PDGF-CC is a downstream substrate of tPA within the neurovascular unit. These effects are mediated through activation of PDGF-α receptors (PDGFR-α) on perivascular astrocytes, and treatment of mice with the PDGFR-α antagonist imatinib after ischemic stroke reduces both cerebrovascular permeability and hemorrhagic complications associated with late administration of thrombolytic tPA. These data demonstrate that PDGF signaling regulates blood-brain barrier permeability and suggest potential new strategies for stroke treatment.


Cancer Research | 2009

Paracrine Signaling by Platelet-Derived Growth Factor-CC Promotes Tumor Growth by Recruitment of Cancer-Associated Fibroblasts

Charlotte Anderberg; Hong Li; Linda Fredriksson; Johanna Andrae; Christer Betsholtz; Xuri Li; Ulf J. Eriksson; Kristian Pietras

Cancer results from the concerted performance of malignant cells and stromal cells. Cell types populating the microenvironment are enlisted by the tumor to secrete a host of growth-promoting cues, thus upholding tumor initiation and progression. Platelet-derived growth factors (PDGF) support the formation of a prominent tumor stromal compartment by as of yet unidentified molecular effectors. Whereas PDGF-CC induces fibroblast reactivity and fibrosis in a range of tissues, little is known about the function of PDGF-CC in shaping the tumor-stroma interplay. Herein, we present evidence for a paracrine signaling network involving PDGF-CC and PDGF receptor-alpha in malignant melanoma. Expression of PDGFC in a mouse model accelerated tumor growth through recruitment and activation of different subsets of cancer-associated fibroblasts. In seeking the molecular identity of the supporting factors provided by cancer-associated fibroblasts, we made use of antibody arrays and an in vivo coinjection model to identify osteopontin as the effector of the augmented tumor growth induced by PDGF-CC. In conclusion, we establish paracrine signaling by PDGF-CC as a potential drug target to reduce stromal support in malignant melanoma.


Glia | 2009

GFAP promoter driven transgenic expression of PDGFB in the mouse brain leads to glioblastoma in a Trp53 null background

Sanna-Maria Hede; Inga Hansson; Gijs B. Afink; Anna Eriksson; Inga Nazarenko; Johanna Andrae; Guillem Genové; Bengt Westermark; Monica Nistér

Glioblastomas are the most common and malignant astrocytic brain tumors in human adults. The tumor suppressor gene TP53 is commonly mutated and/or lost in astrocytic brain tumors and the TP53 alterations are often found in combination with excessive growth factor signaling via PDGF/PDGFRα. Here, we have generated transgenic mice over‐expressing human PDGFB in brain, under control of the human GFAP promoter. These mice showed no phenotype, but on a Trp53 null background a majority of them developed brain tumors. This occurred at 2–6 months of age and tumors displayed human glioblastoma‐like features with integrated development of Pdgfrα+ tumor cells and Pdgfrβ+/Nestin+ vasculature. The transgene was expressed in subependymal astrocytic cells, in glia limitans, and in astrocytes throughout the brain substance, and subsequently, microscopic tumor lesions were initiated equally in all these areas. With tumor size, there was an increase in Nestin positivity and variability in lineage markers. These results indicate an unexpected plasticity of all astrocytic cells in the adult brain, not only of SVZ cells. The results also indicate a contribution of widely distributed Pdgfrα+ precursor cells in the tumorigenic process.


The Journal of Physiology | 2009

Neurobeachin, a protein implicated in membrane protein traffic and autism, is required for the formation and functioning of central synapses

Lucian Medrihan; Astrid Rohlmann; Richard Fairless; Johanna Andrae; Markus Döring; Markus Missler; Weiqi Zhang; Manfred W. Kilimann

The development of neuronal networks in the brain requires the differentiation of functional synapses. Neurobeachin (Nbea) was identified as a putative regulator of membrane protein trafficking associated with tubulovesicular endomembranes and postsynaptic plasma membranes. Nbea is essential for evoked transmission at neuromuscular junctions, but its role in the central nervous system has not been characterized. Here, we have studied central synapses of a newly generated gene‐trap knockout (KO) mouse line at embryonic day 18, because null‐mutant mice are paralysed and die perinatally. Although the overall brain architecture was normal, we identified major abnormalities of synaptic function in mutant animals. In acute slices from the brainstem, both spontaneous excitatory and inhibitory postsynaptic currents were clearly reduced and failure rates of evoked inhibitory responses were markedly increased. In addition, the frequency of miniature excitatory and both the frequency and amplitudes of miniature inhibitory postsynaptic currents were severely diminished in KO mice, indicating a perturbation of both action potential‐dependent and ‐independent transmitter release. Moreover, Nbea appears to be important for the formation and composition of central synapses because the area density of mature asymmetric contacts in the fetal brainstem was reduced to 30% of wild‐type levels, and the expression levels of a subset of synaptic marker proteins were smaller than in littermate controls. Our data demonstrate for the first time a function of Nbea at central synapses that may be based on its presumed role in targeting membrane proteins to synaptic contacts, and are consistent with the ‘excitatory–inhibitory imbalance’ model of autism where Nbea gene rearrangements have been detected in some patients.


Nature | 2018

A molecular atlas of cell types and zonation in the brain vasculature

Michael Vanlandewijck; Liqun He; Maarja Andaloussi Mäe; Johanna Andrae; Koji Ando; Francesca Del Gaudio; Khayrun Nahar; Thibaud Lebouvier; Bàrbara Laviña; Leonor Gouveia; Ying Sun; Elisabeth Raschperger; Markus Räsänen; Yvette Zarb; Naoki Mochizuki; Annika Keller; Urban Lendahl; Christer Betsholtz

Cerebrovascular disease is the third most common cause of death in developed countries, but our understanding of the cells that compose the cerebral vasculature is limited. Here, using vascular single-cell transcriptomics, we provide molecular definitions for the principal types of blood vascular and vessel-associated cells in the adult mouse brain. We uncover the transcriptional basis of the gradual phenotypic change (zonation) along the arteriovenous axis and reveal unexpected cell type differences: a seamless continuum for endothelial cells versus a punctuated continuum for mural cells. We also provide insight into pericyte organotypicity and define a population of perivascular fibroblast-like cells that are present on all vessel types except capillaries. Our work illustrates the power of single-cell transcriptomics to decode the higher organizational principles of a tissue and may provide the initial chapter in a molecular encyclopaedia of the mammalian vasculature.


Molecular and Cellular Neuroscience | 2001

Platelet-derived growth factor receptor-alpha in ventricular zone cells and in developing neurons.

Johanna Andrae; Inga Hansson; Gijs Afink; Monica Nistér

Cells in the early neuroepithelium differentiate and give rise to all cells in the central nervous system (CNS). The ways from a multipotent CNS stem cell to specialized neurons and glia are not fully understood. Using immunohistochemistry we found that neuroepithelial cells express the platelet-derived growth factor receptor-alpha (PDGFR-alpha) in the neural plate at embryonic day 8.5 and onwards in the neural tube. The protein was polarized to ventricular endfeet. Furthermore, PDGFR-alpha expression was localized to cells undergoing early neuronal development. We also found PDGFR-alpha expression in developing granule cells in the postnatal cerebellum, in Purkinje cells in the adult cerebellum and on processes of developing dorsal root ganglion cells. Previous reports mainly describe PDGFR-alpha expression in oligodendrocyte precursors and glial cells. We believe, in line with a few previous reports, that the PDGFR-alpha in addition marks a pool of undifferentiated cells, which are able to differentiate into neurons.


Biochemical and Biophysical Research Communications | 2002

Platelet-derived growth factor-B and -C and active α-receptors in medulloblastoma cells

Johanna Andrae; Catrin Molander; Anja Smits; Keiko Funa; Monica Nistér

The malignant childhood brain tumor medulloblastoma belongs to the group of primitive neuroectodermal tumours (PNETs). Medulloblastomas are thought to arise from remnants of the transient external germinal layer in the cerebellum. Proliferation, differentiation, and motility of cells in the central nervous system are regulated by growth factors, e.g., platelet-derived growth factor (PDGF). Recently, it was shown that higher level of PDGF α-receptor expression is characteristic of metastatic medulloblastomas. We have investigated five medulloblastoma/PNET cell lines and found that the PDGF α-receptor is actively signalling in most of them, an activity most likely driven by endogenously produced PDGF-C. PDGF-C is normally present in cells of the developing external germinal layer and our results are consistent with the idea that medulloblastomas are derived from such cells undergoing early neuronal differentiation. Moreover, the expression of PDGF and its receptors was associated with neuronal characteristics, but not with high levels of c-myc expression in the medullablastoma cells.


American Journal of Pathology | 2012

Platelet-Derived Growth Factor C Deficiency in C57BL/6 Mice Leads to Abnormal Cerebral Vascularization, Loss of Neuroependymal Integrity, and Ventricular Abnormalities

Linda Fredriksson; Ingrid Nilsson; Enming J. Su; Johanna Andrae; Hao Ding; Christer Betsholtz; Ulf Eriksson; Daniel A. Lawrence

Platelet-derived growth factors (PDGFs) and their tyrosine kinase receptors (PDGFRs) are known to play important roles during development of the lungs, central nervous system (CNS), and skeleton and in several diseases. PDGF-C is a ligand for the tyrosine kinase receptor PDGFRα. Mutations in the gene encoding PDGF-C have been linked to clefts of the lip and/or palate in humans, and ablation of PDGF-C in 129/Sv background mice results in death during the perinatal period. In this study, we report that ablation of PDGF-C in C57BL/6 mice results in a milder phenotype than in 129/Sv mice, and we present a phenotypic characterization of PDGF-C deficiency in the adult murine CNS. Multiple congenital defects were observed in the CNS of PDGF-C-null C57BL/6 mice, including cerebral vascular abnormalities with abnormal vascular smooth muscle cell coverage. In vivo imaging of mice deficient in PDGF-C also revealed cerebral ventricular abnormalities, such as asymmetry of the lateral ventricles and hypoplasia of the septum, reminiscent of cavum septum pellucidum in humans. We further noted that PDGF-C-deficient mice displayed a distorted ependymal lining of the lateral ventricles, and we found evidence of misplaced neurons in the ventricular lining. We conclude that PDGF-C plays a critical role in the development of normal cerebral ventricles and neuroependymal integrity as well as in normal cerebral vascularization.


PLOS ONE | 2011

Brain abnormalities and glioma-like lesions in mice overexpressing the long isoform of PDGF-A in astrocytic cells.

Inga Nazarenko; Anna Hedrén; Hanna Sjodin; Abiel Orrego; Johanna Andrae; Gijs B. Afink; Monica Nistér; Mikael S. Lindström

Background Deregulation of platelet-derived growth factor (PDGF) signaling is a hallmark of malignant glioma. Two alternatively spliced PDGF-A mRNAs have been described, corresponding to a long (L) and a short (S) isoform of PDGF-A. In contrast to PDGF-A(S), the PDGF-A(L) isoform has a lysine and arginine rich carboxy-terminal extension that acts as an extracellular matrix retention motif. However, the exact role of PDGF-A(L) and how it functionally differs from the shorter isoform is not well understood. Methodology/Principal Findings We overexpressed PDGF-A(L) as a transgene under control of the glial fibrillary acidic protein (GFAP) promoter in the mouse brain. This directs expression of the transgene to astrocytic cells and GFAP expressing neural stem cells throughout the developing and adult central nervous system. Transgenic mice exhibited a phenotype with enlarged skull at approximately 6-16 weeks of age and they died between 1.5 months and 2 years of age. We detected an increased number of undifferentiated cells in all areas of transgene expression, such as in the subependymal zone around the lateral ventricle and in the cerebellar medulla. The cells stained positive for Pdgfr-α, Olig2 and NG2 but this population did only partially overlap with cells positive for Gfap and the transgene reporter. Interestingly, a few mice presented with overt neoplastic glioma-like lesions composed of both Olig2 and Gfap positive cell populations and with microvascular proliferation, in a wild-type p53 background. Conclusions Our findings show that PDGF-A(L) can induce accumulation of immature cells in the mouse brain. The strong expression of NG2, Pdgfr-α and Olig2 in PDGF-A(L) brains suggests that a fraction of these cells are oligodendrocyte progenitors. In addition, accumulation of fluid in the subarachnoid space and skull enlargement indicate that an increased intracranial pressure contributed to the observed lethality.

Collaboration


Dive into the Johanna Andrae's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ying Sun

Karolinska Institutet

View shared research outputs
Researchain Logo
Decentralizing Knowledge