Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Linda Fredriksson is active.

Publication


Featured researches published by Linda Fredriksson.


Nature Medicine | 2008

Activation of PDGF-CC by tissue plasminogen activator impairs blood-brain barrier integrity during ischemic stroke

Enming J. Su; Linda Fredriksson; Melissa Geyer; Erika Folestad; Jacqueline M. Cale; Johanna Andrae; Yamei Gao; Kristian Pietras; Kris Mann; Manuel Yepes; Dudley K. Strickland; Christer Betsholtz; Ulf Eriksson; Daniel A. Lawrence

Thrombolytic treatment of ischemic stroke with tissue plasminogen activator (tPA) is markedly limited owing to concerns about hemorrhagic complications and the requirement that tPA be administered within 3 h of symptoms. Here we report that tPA activation of latent platelet-derived growth factor-CC (PDGF-CC) may explain these limitations. Intraventricular injection of tPA or active PDGF-CC, in the absence of ischemia, leads to significant increases in cerebrovascular permeability. In contrast, co-injection of neutralizing antibodies to PDGF-CC with tPA blocks this increased permeability, indicating that PDGF-CC is a downstream substrate of tPA within the neurovascular unit. These effects are mediated through activation of PDGF-α receptors (PDGFR-α) on perivascular astrocytes, and treatment of mice with the PDGFR-α antagonist imatinib after ischemic stroke reduces both cerebrovascular permeability and hemorrhagic complications associated with late administration of thrombolytic tPA. These data demonstrate that PDGF signaling regulates blood-brain barrier permeability and suggest potential new strategies for stroke treatment.


Cancer Research | 2009

Paracrine Signaling by Platelet-Derived Growth Factor-CC Promotes Tumor Growth by Recruitment of Cancer-Associated Fibroblasts

Charlotte Anderberg; Hong Li; Linda Fredriksson; Johanna Andrae; Christer Betsholtz; Xuri Li; Ulf J. Eriksson; Kristian Pietras

Cancer results from the concerted performance of malignant cells and stromal cells. Cell types populating the microenvironment are enlisted by the tumor to secrete a host of growth-promoting cues, thus upholding tumor initiation and progression. Platelet-derived growth factors (PDGF) support the formation of a prominent tumor stromal compartment by as of yet unidentified molecular effectors. Whereas PDGF-CC induces fibroblast reactivity and fibrosis in a range of tissues, little is known about the function of PDGF-CC in shaping the tumor-stroma interplay. Herein, we present evidence for a paracrine signaling network involving PDGF-CC and PDGF receptor-alpha in malignant melanoma. Expression of PDGFC in a mouse model accelerated tumor growth through recruitment and activation of different subsets of cancer-associated fibroblasts. In seeking the molecular identity of the supporting factors provided by cancer-associated fibroblasts, we made use of antibody arrays and an in vivo coinjection model to identify osteopontin as the effector of the augmented tumor growth induced by PDGF-CC. In conclusion, we establish paracrine signaling by PDGF-CC as a potential drug target to reduce stromal support in malignant melanoma.


The EMBO Journal | 2004

Tissue plasminogen activator is a potent activator of PDGF‐CC

Linda Fredriksson; Hong Li; Christina Fieber; Xuri Li; Ulf Eriksson

Tissue plasminogen activator (tPA) is a serine protease involved in the degradation of blood clots through the activation of plasminogen to plasmin. Here we report on the identification of tPA as a specific protease able to activate platelet‐derived growth factor C (PDGF‐C). The newly identified PDGF‐C is secreted as a latent dimeric factor (PDGF‐CC) that upon proteolytic removal of the N‐terminal CUB domains becomes a PDGF receptor α agonist. The CUB domains in PDGF‐CC directly interact with tPA, and fibroblasts from tPA‐deficient mice fail to activate latent PDGF‐CC. We further demonstrate that growth of primary fibroblasts in culture is dependent on a tPA‐mediated cleavage of latent PDGF‐CC, generating a growth stimulatory loop. Immunohistochemical analysis showed similar expression patterns of PDGF‐C and tPA in developing mouse embryos and in tumors, indicating both autocrine and paracrine modes of activation of PDGF receptor‐mediated signaling pathways. The identification of tPA as an activator of PDGF signaling establishes a novel role for the protease in normal and pathological tissue growth and maintenance, distinct from its well‐known role in plasminogen activation and fibrinolysis.


Oncogene | 2003

PDGF-D is a potent transforming and angiogenic growth factor

Hong Li; Linda Fredriksson; Xuri Li; Ulf J. Eriksson

Platelet-derived growth factors (PDGFs) are important for normal tissue growth and maintenance. Overexpression of the classical PDGFs, PDGF-A and PDGF-B, has been linked to several diseases, including cancer, fibrotic disease and atherosclerosis. Recently, two novel PDGFs, PDGF-C and PDGF-D, were discovered. It has not yet been established whether PDGF-C and PDGF-D are linked to disease phenotypes like the classical PDGFs. PDGF-B, the cellular homologue of the viral simian sarcoma oncogene v-sis, is known to potently induce cellular transformation through activation of PDGF receptor (PDGFR)-β. In this work, we have determined the transformation efficacy of PDGF-D in comparison with that of PDGF-C and PDGF-B. PDGF-D is a potent transforming growth factor for NIH/3T3 cells, and the transformed cells displayed stress fibre reorganization, increased proliferation rate, anchorage-independent growth in soft agar, ability to induce tumours in nude mice, and upregulation of vascular endothelial growth factor. Morphological analyses of the vasculatures from the PDGF-isoform-expressing tumours revealed marked differences suggesting differential signalling through the two PDGF receptors in tumour vessel development and remodelling. In summary, these results suggest that PDGF-D induce cellular transformation and promote tumour growth by accelerating the proliferation rate of the tumour cells, and by stimulation of tumour neovascularization.


Journal of The American Society of Nephrology | 2008

PDGF-C Is a Proinflammatory Cytokine that Mediates Renal Interstitial Fibrosis

Frank Eitner; Eva Bücher; Claudia R.C. van Roeyen; Uta Kunter; Song Rong; Claudia Seikrit; Luigi Villa; Peter Boor; Linda Fredriksson; Gudrun Bäckström; Ulf J. Eriksson; Arne Östman; Jürgen Floege; Tammo Ostendorf

PDGF-C is a potent mitogen for fibroblasts in vitro. Transgenic PDGF-C overexpression in the heart or liver induces organ fibrosis, and PDGF-C expression is upregulated at sites of interstitial fibrosis in human and rat kidneys; however, the effect of inhibiting PDGF-C on the development of renal fibrosis in vivo is unknown. Renal fibrosis was induced in C57BL/6 mice by unilateral ureteral obstruction (UUO), and then mice were treated with neutralizing anti–PDGF-C antiserum or nonspecific IgG. An increase in PDGF-C expression was observed in fibrotic areas after UUO, contributed in large part by infiltrating macrophages. Treatment with anti–PDGF-C reduced renal fibrosis by 30% at day 5 and reduced interstitial myofibroblast accumulation by 57%. In vitro, PDGF-C was a potent mitogen for renal fibroblasts and induced chemokine expression. In vivo, anti–PDGF-C treatment produced a decrease in the expression of the renal chemokines CCL2 and CCL5 (85 and 67% reductions, respectively), accompanied by a significant decrease in leukocyte infiltration and CCR2 mRNA expression. Further supporting a role of PDGF-C in renal fibrosis, PDGF-C−/− mice demonstrated a reduction in fibrosis and leukocyte infiltration in response to UUO compared with wild-type littermates. In conclusion, specific neutralization or lack of PDGF-C reduces the development of renal inflammation and fibrosis in obstructed mouse kidneys. Leukocyte-derived PDGF-C induces chemokine expression, which may lead to the recruitment of additional leukocytes, creating an amplification loop for renal inflammation and fibrosis.


Journal of Thrombosis and Haemostasis | 2009

Tissue plasminogen activator-mediated PDGF signaling and neurovascular coupling in stroke

Enming J. Su; Linda Fredriksson; Gerald P. Schielke; Ulf Eriksson; Daniel E. Lawrence

Summary.  The use of tissue plasminogen activator (tPA) as a thrombolytic treatment in ischemic stroke is limited largely due to concerns for hemorrhagic complications. The underlying mechanisms are still unknown, but evidence is beginning to emerge that tPA interacts with key regulators of the neurovascular unit (NVU), and that these interactions may contribute to the undesirable side effects associated with the use of tPA in ischemic stroke. Understanding these connections and tPA’s normal function within the NVU may offer new insights into future therapeutic approaches.


American Journal of Pathology | 2012

Platelet-Derived Growth Factor C Deficiency in C57BL/6 Mice Leads to Abnormal Cerebral Vascularization, Loss of Neuroependymal Integrity, and Ventricular Abnormalities

Linda Fredriksson; Ingrid Nilsson; Enming J. Su; Johanna Andrae; Hao Ding; Christer Betsholtz; Ulf Eriksson; Daniel A. Lawrence

Platelet-derived growth factors (PDGFs) and their tyrosine kinase receptors (PDGFRs) are known to play important roles during development of the lungs, central nervous system (CNS), and skeleton and in several diseases. PDGF-C is a ligand for the tyrosine kinase receptor PDGFRα. Mutations in the gene encoding PDGF-C have been linked to clefts of the lip and/or palate in humans, and ablation of PDGF-C in 129/Sv background mice results in death during the perinatal period. In this study, we report that ablation of PDGF-C in C57BL/6 mice results in a milder phenotype than in 129/Sv mice, and we present a phenotypic characterization of PDGF-C deficiency in the adult murine CNS. Multiple congenital defects were observed in the CNS of PDGF-C-null C57BL/6 mice, including cerebral vascular abnormalities with abnormal vascular smooth muscle cell coverage. In vivo imaging of mice deficient in PDGF-C also revealed cerebral ventricular abnormalities, such as asymmetry of the lateral ventricles and hypoplasia of the septum, reminiscent of cavum septum pellucidum in humans. We further noted that PDGF-C-deficient mice displayed a distorted ependymal lining of the lateral ventricles, and we found evidence of misplaced neurons in the ventricular lining. We conclude that PDGF-C plays a critical role in the development of normal cerebral ventricles and neuroependymal integrity as well as in normal cerebral vascularization.


Oncogene | 2009

The uPA/uPAR system regulates the bioavailability of PDGF-DD: implications for tumour growth

M Ehnman; Hong Li; Linda Fredriksson; Kristian Pietras; Ulf J. Eriksson

Members of the platelet-derived growth factor (PDGF) family are mitogens for cells of mesenchymal origin and have important functions during embryonic development, blood vessel maturation, fibrotic diseases and cancer. In contrast to the two classical PDGFs, the novel and less well-characterized members, PDGF-CC and PDGF-DD, are latent factors that need to be processed extracellularly by activating proteases, before they can mediate PDGF receptor activation. Here, we elucidate the structural requirements for urokinase plasminogen activator (uPA)-mediated activation of PDGF-DD, as well as the intricate interplay with uPA receptor (uPAR) signalling. Furthermore, we show that activated PDGF-DD, in comparison to latent, more potently transforms NIH/3T3 cells in vitro. Conversely, xenograft studies in nude mice demonstrate that cells expressing latent PDGF-DD are more tumorigenic than those expressing activated PDGF-DD. These findings imply that a fine-tuned proteolytic activation, in the local milieu, controls PDGF-DD bioavailability. Moreover, we suggest that proteolytic activation of PDGF-DD reveals a retention motif mediating interactions with pericellular components. Our proposed mechanism, where uPA not only generates active PDGF-DD, but also regulates its spatial distribution, provides novel insights into the biological function of PDGF-DD.


Frontiers in Cellular Neuroscience | 2015

Imatinib treatment reduces brain injury in a murine model of traumatic brain injury

Enming Joseph Su; Linda Fredriksson; Mia Kanzawa; Shannon J. Moore; Erika Folestad; Tamara K. Stevenson; Ingrid Nilsson; Maithili Sashindranath; Gerald P. Schielke; Mark Warnock; Margaret Ragsdale; Kris Mann; Anna-Lisa E. Lawrence; Robert L. Medcalf; Ulf Eriksson; Geoffrey G. Murphy; Daniel A. Lawrence

Current therapies for Traumatic brain injury (TBI) focus on stabilizing individuals and on preventing further damage from the secondary consequences of TBI. A major complication of TBI is cerebral edema, which can be caused by the loss of blood brain barrier (BBB) integrity. Recent studies in several CNS pathologies have shown that activation of latent platelet derived growth factor-CC (PDGF-CC) within the brain can promote BBB permeability through PDGF receptor α (PDGFRα) signaling, and that blocking this pathway improves outcomes. In this study we examine the efficacy for the treatment of TBI of an FDA approved antagonist of the PDGFRα, Imatinib. Using a murine model we show that Imatinib treatment, begun 45 min after TBI and given twice daily for 5 days, significantly reduces BBB dysfunction. This is associated with significantly reduced lesion size 24 h, 7 days, and 21 days after TBI, reduced cerebral edema, determined from apparent diffusion co-efficient (ADC) measurements, and with the preservation of cognitive function. Finally, analysis of cerebrospinal fluid (CSF) from human TBI patients suggests a possible correlation between high PDGF-CC levels and increased injury severity. Thus, our data suggests a novel strategy for the treatment of TBI with an existing FDA approved antagonist of the PDGFRα.


Annals of clinical and translational neurology | 2015

Identification of a neurovascular signaling pathway regulating seizures in mice

Linda Fredriksson; Tamara K. Stevenson; Enming J. Su; Margaret Ragsdale; Shannon J. Moore; Stefan Craciun; Gerald P. Schielke; Geoffrey G. Murphy; Daniel A. Lawrence

A growing body of evidence suggests that increased blood–brain barrier (BBB) permeability can contribute to the development of seizures. The protease tissue plasminogen activator (tPA) has been shown to promote BBB permeability and susceptibility to seizures. In this study, we examined the pathway regulated by tPA in seizures.

Collaboration


Dive into the Linda Fredriksson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hong Li

Ludwig Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xuri Li

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christina Fieber

Ludwig Institute for Cancer Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge