Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Johanna Bodin is active.

Publication


Featured researches published by Johanna Bodin.


Immunopharmacology and Immunotoxicology | 2013

Long-term bisphenol A exposure accelerates insulitis development in diabetes-prone NOD mice

Johanna Bodin; Anette Kocbach Bølling; Mari Samuelsen; Rune Becher; Martinus Løvik; Unni Cecilie Nygaard

Abstract Exposure to the endocrine disruptor (ED) bisphenol A (BPA) used in polycarbonate plastic and epoxy resins appears ubiquitous since BPA can be found in over 90% of analyzed urine samples from all age groups. There is a parallel occurrence of increased prevalence in type 1 diabetes mellitus (T1DM) and an increased exposure to EDs the last decades. T1DM is caused by insulin deficiency due to autoimmune destruction of insulin producing pancreatic beta cells and has been suggested to be induced by various environmental factors acting together with a genetic predisposition. The objective of the present study was to investigate the effect of BPA (0, 1 and 100 mg/l BPA in the drinking water) on T1DM development in nonobese diabetic (NOD) mice, spontaneously developing T1DM. Histological evaluation of pancreas from 12-weeks-old female mice revealed significantly increased insulitis in mice exposed to 1 mg/l BPA, while the insulitis was less severe at the higher BPA exposure. Serum glucose levels in the 1 mg/ml BPA group tended to be hyperglycaemic, also indicating an accelerated onset of T1DM. The high BPA exposure seemed to counteract the diabetes development in females and also in male NOD mice for both BPA concentrations. Prior to insulitis, both BPA concentrations resulted in increased apoptosis and reduced numbers of tissue resident macrophages in pancreatic islets. In conclusion, long-term BPA exposure at a dose three times higher than the tolerable daily intake of 50 µg/kg, appeared to accelerate spontaneous insulitis and diabetes development in NOD mice.


BioMed Research International | 2015

Can Exposure to Environmental Chemicals Increase the Risk of Diabetes Type 1 Development

Johanna Bodin; Lars Christian Stene; Unni Cecilie Nygaard

Type 1 diabetes mellitus (T1DM) is an autoimmune disease, where destruction of beta-cells causes insulin deficiency. The incidence of T1DM has increased in the last decades and cannot entirely be explained by genetic predisposition. Several environmental factors are suggested to promote T1DM, like early childhood enteroviral infections and nutritional factors, but the evidence is inconclusive. Prenatal and early life exposure to environmental pollutants like phthalates, bisphenol A, perfluorinated compounds, PCBs, dioxins, toxicants, and air pollutants can have negative effects on the developing immune system, resulting in asthma-like symptoms and increased susceptibility to childhood infections. In this review the associations between environmental chemical exposure and T1DM development is summarized. Although information on environmental chemicals as possible triggers for T1DM is sparse, we conclude that it is plausible that environmental chemicals can contribute to T1DM development via impaired pancreatic beta-cell and immune-cell functions and immunomodulation. Several environmental factors and chemicals could act together to trigger T1DM development in genetically susceptible individuals, possibly via hormonal or epigenetic alterations. Further observational T1DM cohort studies and animal exposure experiments are encouraged.


International Journal of Developmental Neuroscience | 2013

Prenatal exposure to bisphenol A interferes with the development of cerebellar granule neurons in mice and chicken.

Gro H. Mathisen; Mazyar Yazdani; Kirsten E. Rakkestad; Petra Aden; Johanna Bodin; Mari Samuelsen; Unni Cecilie Nygaard; Ingeborg Løstegaard Goverud; Mona Gaarder; Else Marit Løberg; Anette Kocbach Bølling; Rune Becher; Ragnhild E. Paulsen

In mice, prenatal exposure to low doses of bisphenol A has been shown to affect neurogenesis and neuronal migration in cortex, resulting in disturbance of both neuronal positioning and the network formation between thalamus and cortex in the offspring brain. In the present study we investigated whether prenatal exposure to bisphenol A disturbs the neurodevelopment of the cerebellum. Two different model systems were used; offspring from two strains of mice from mothers receiving bisphenol A in the drinking water before mating, during gestation and lactation, and chicken embryos exposed to bisphenol A (in the egg) on embryonic day 16 for 24 h before preparation of cerebellar granule cell cultures. In the cerebellum, tight regulation of the level of transcription factor Pax6 is critical for correct development of granule neurons. During the development, the Pax6 level in granule neurons is high when these cells are located in the external granule layer and during their migration to the internal granule layer, and it is then reduced. We report that bisphenol A induced an increase in the thickness of the external granule layer and also an increase in the total cerebellar Pax6 level in 11 days old mice offspring. In cultured chicken cerebellar granule neurons from bisphenol A injected eggs the Pax6 level was increased day 6 in vitro. Together, these findings indicate that bisphenol A may affect the granule neurons in the developing cerebellum and thereby may disturb the correct development of the cerebellum.


Toxicology reports | 2015

Exposure to bisphenol A, but not phthalates, increases spontaneous diabetes type 1 development in NOD mice

Johanna Bodin; Anette Kocbach Bølling; A. Wendt; Lena Eliasson; Rune Becher; Frieke Kuper; Martinus Løvik; Unni Cecilie Nygaard

Type 1 diabetes mellitus (T1DM) is an autoimmune destruction of insulin producing pancreatic beta-cells due to a genetic predisposition and can be triggered by environmental factors. We have previously shown that bisphenol A (BPA) accelerates the spontaneous development of diabetes in non-obese diabetic (NOD) mice. Here, we hypothesized that oral exposure to a mixture of the endocrine disruptors BPA and phthalates, relevant for human exposure, would accelerate diabetes development compared to BPA alone. NOD mice were exposed to BPA (1 mg/l), a mixture of phthalates (DEHP 1 mg/l, DBP 0.2 mg/l, BBP 10 mg/l and DiBP 20 mg/l) or a combination of BPA and the phthalate mixture through drinking water from conception and throughout life. Previous observations that BPA exposure increased the prevalence of diabetes and insulitis and decreased the number of tissue resident macrophages in pancreas were confirmed, and extended by demonstrating that BPA exposure also impaired the phagocytic activity of peritoneal macrophages. None of these effects were observed after phthalate exposure alone. The phthalate exposure in combination with BPA seemed to dampen the BPA effects on macrophage number and function as well as diabetes development, but not insulitis development. Exposure to BPA alone or in combination with phthalates decreased cytokine release (TNFα, IL-6, IL-10, IFNγ, IL-4) from in vitro stimulated splenocytes and lymph node cells, indicating systemic changes in immune function. In conclusion, exposure to BPA, but not to phthalates or mixed exposure to BPA and phthalates, accelerated diabetes development in NOD mice, apparently in part via systemic immune alterations including decreased macrophage function.


Food and Chemical Toxicology | 2015

Early life exposure to bisphenol A investigated in mouse models of airway allergy, food allergy and oral tolerance

Unni Cecilie Nygaard; N. E. Vinje; Mari Samuelsen; Monica Andreassen; Else-Carin Groeng; Anette Kocbach Bølling; Rune Becher; Martinus Løvik; Johanna Bodin

The impact of early life exposure to bisphenol A (BPA) through drinking water was investigated in mouse models of respiratory allergy, food allergy and oral tolerance. Balb/c mice were exposed to BPA (0, 10 or 100 μg/ml), and the offspring were intranasally exposed to the allergen ovalbumin (OVA). C3H/HeJ offspring were sensitized with the food allergen lupin by intragastric gavage, after exposure to BPA (0, 1, 10 or 100 μg/ml). In separate offspring, oral tolerance was induced by gavage of 5 mg lupin one week before entering the protocol for the food allergy induction. In the airway allergy model, BPA (100 μg/ml) caused increased eosinophil numbers in bronchoalveolar lavage fluid (BALF) and a trend of increased OVA-specific IgE levels. In the food allergy and tolerance models, BPA did not alter the clinical anaphylaxis or antibody responses, but induced alterations in splenocyte cytokines and decreased mouse mast cell protease (MMCP)-1 serum levels. In conclusion, early life exposure to BPA through drinking water modestly augmented allergic responses in a mouse model of airway allergy only at high doses, and not in mouse models for food allergy and tolerance. Thus, our data do not support that BPA promotes allergy development at exposure levels relevant for humans.


BioMed Research International | 2017

Bisphenol A Is More Potent than Phthalate Metabolites in Reducing Pancreatic β-Cell Function

Nina Mickelson Weldingh; Lena Jørgensen-Kaur; Rune Becher; Jørn A. Holme; Johanna Bodin; Unni Cecilie Nygaard; Anette Kocbach Bølling

Bisphenol A (BPA) and phthalates are common environmental contaminants that have been proposed to influence incidence and development of types 1 and 2 diabetes. Thus, effects of BPA and three phthalate metabolites (monoisobutyl phthalate (MiBP), mono-n-butyl phthalate (MnBP), and mono-(2-ethylhexyl) phthalate (MEHP)) were studied in the pancreatic β-cell line INS-1E, after 2–72 h of exposure to 5–500 μM. Three endpoints relevant to accelerated development of types 1 or 2 diabetes were investigated: β-cell viability, glucose-induced insulin secretion, and β-cell susceptibility to cytokine-induced cell death. BPA and the phthalate metabolites reduced cellular viability after 72 h of exposure, with BPA as the most potent chemical. Moreover, BPA, MEHP, and MnBP increased insulin secretion after 2 h of simultaneous exposure to chemicals and glucose, with potency BPA > MEHP > MnBP. Longer chemical exposures (24–72 h) showed no consistent effects on glucose-induced insulin secretion, and none of the environmental chemicals affected susceptibility to cytokine-induced cell death. Overall, BPA was more potent than the investigated phthalate metabolites in affecting insulin secretion and viability in the INS-1E pancreatic β-cells. In contrast to recent literature, concentrations with relevance to human exposures (1–500 nM) did not affect the investigated endpoints, suggesting that this experimental model displayed relatively low sensitivity to environmental chemical exposure.


Excli Journal | 2013

Pulmonary phthalate exposure and asthma - Is PPAR a plausible mechanistic link?

Anette Kocbach Bølling; Jørn A. Holme; Carl-Gustaf Bornehag; Unni Cecilie Nygaard; Randi J. Bertelsen; Eewa Nånberg; Johanna Bodin; Amrit Kaur Sakhi; Cathrine Thomsen; Rune Becher

Due to their extensive use as plasticisers in numerous consumer products, phthalates have become ubiquitous environmental contaminants. An increasing number of epidemiological studies suggest that exposure to phthalates may be associated with worsening or development of airway diseases. Peroxisome Proliferation Activated Receptors (PPAR)s, identified as important targets for phthalates in early studies in rodent liver, have been suggested as a possible mechanistic link. In this review we discuss the likelihood of an involvement of PPARs in asthma development and exacerbation due to pulmonary phthalate exposure. First, we go through the literature on indoor air levels of phthalates and pulmonary phthalate kinetics. These data are then used to estimate the pulmonary phthalate levels due to inhalation exposure. Secondly, the literature on phthalate-induced activation or modulation of PPARs is summarized. Based on these data, we discuss whether pulmonary phthalate exposure is likely to cause PPAR activation, and if this is a plausible mechanism for adverse effects of phthalates in the lung. It is concluded that the pulmonary concentrations of some phthalates may be sufficient to cause a direct activation of PPARs. Since PPARs mainly mediate anti-inflammatory effects in the lungs, a direct activation is not a likely molecular mechanism for adverse effects of phthalates. However, possible modulatory effects of phthalates on PPARs deserve further investigation, including partial antagonist effects and/or cross talk with other signalling pathways. Moreover other mechanisms, including interactions between phthalates and other receptors, could also contribute to possible adverse pulmonary effects of phthalates.


Toxicology reports | 2016

Exposure to perfluoroundecanoic acid (PFUnDA) accelerates insulitis development in a mouse model of type 1 diabetes

Johanna Bodin; Else-Carin Groeng; Monica Andreassen; Hubert Dirven; Unni Cecilie Nygaard

Perfluoralkylated substances (PFAS) are classified as persistent, bioaccumulative and toxic substances and are widespread environmental contaminants. Humans are exposed through food, drinking water and air. We have previously reported that bisphenol A accelerates spontaneous diabetes development in non-obese diabetic (NOD) mice and observed in the present study that perfluoroundecanoic acid, PFUnDA, increased insulitis development, a prerequisite for diabetes development in NOD mice. We exposed NOD mice to PFUnDA in drinking water (3, 30 and 300 μg/l) at mating, during gestation and lactation and until 30 weeks of age. After 300 μg/l PFUnDA exposure, we report (i) increased pancreatic insulitis, (ii) increased number of apoptotic cells in pancreatic islets prior to insulitis and (iii) decreased phagocytosis in peritoneal macrophages. There was also a trend of decreased number of tissue resident macrophages in pancreatic islets prior to insulitis after exposure to 300 μg/l, and altered cytokine secretion in activated splenocytes after exposure to 3 μg/l PFUnDA. Although insulitis is a prerequisite for autoimmune diabetes, the accelerated insulitis was not associated with accelerated diabetes development. Instead, the incidence of diabetes tended to be reduced in the animals exposed to 3 and 30 μg/l PFUnDA, suggesting a non-monotonic dose response. The effects of PFUnDA exposure on increased apoptosis in pancreas and reduced macrophage function as well as accelerated insulitis development in NOD mice, may also be relevant for human insulitis. Further observational autoimmune diabetes clinical cohort studies and animal experiments for PFUnDA as well as other PFASs are therefore encouraged.


Food and Chemical Toxicology | 2018

Decreased macrophage phagocytic function due to xenobiotic exposures in vitro, difference in sensitivity between various macrophage models

Hanne Friis Berntsen; Anette Kocbach Bølling; Cesilie Granum Bjørklund; Karin E. Zimmer; Erik Ropstad; Shanbeh Zienolddiny; Rune Becher; Jørn A. Holme; Hubert Dirven; Unni Cecilie Nygaard; Johanna Bodin

Both autoimmune disease prevalence and exposure to immunotoxic chemicals have increased the last decades. As a first screening of immunotoxic chemicals possibly affecting development of autoimmunity through attenuated macrophage function, we demonstrate a promising model measuring macrophage function in isolated peritoneal macrophages (PCM) from Wistar rats and C57Bl/6 mice. Immunotoxic effects of bisphenol A (BPA) and a selection of perfluoroalkyl acids (PFAAs) were analysed in vitro assessing phagocytic function of macrophages from different sources. Phagocytosis was reduced in PCM of C57Bl/6 mice and Wistar rats after BPA and perfluoroundecanoic acid (PFUnDA) exposure, but not in macrophages derived from human and rat monocyte derived macrophages (MDM). On the other hand, in vitro exposure to mixtures of persistent organic pollutants (POPs) showed similar reductions in rat PCM and rat and human MDM phagocytosis. Reduced phagocytosis was partly due to cytotoxicity. PCM isolated from non-obese diabetic (NOD) mice, interleukin 1α/β knockout (IL-1KO) mice and new-born rats were less sensitive to the xenobiotics than PCM from adult wild type rodents. Finally, in vivo studies with NOD mice verified that POP exposure also decreased the number of pancreatic macrophages in pancreatic islets, reflecting early signs of autoimmunity development, similarly as previously described for BPA.


Toxicological Sciences | 2014

Transmaternal Bisphenol A Exposure Accelerates Diabetes Type 1 Development in NOD Mice

Johanna Bodin; Anette Kocbach Bølling; Rune Becher; F. Kuper; Martinus Løvik; Unni Cecilie Nygaard

Collaboration


Dive into the Johanna Bodin's collaboration.

Top Co-Authors

Avatar

Unni Cecilie Nygaard

Norwegian Institute of Public Health

View shared research outputs
Top Co-Authors

Avatar

Anette Kocbach Bølling

Norwegian Institute of Public Health

View shared research outputs
Top Co-Authors

Avatar

Rune Becher

Norwegian Institute of Public Health

View shared research outputs
Top Co-Authors

Avatar

Martinus Løvik

Norwegian Institute of Public Health

View shared research outputs
Top Co-Authors

Avatar

Jørn A. Holme

Norwegian Institute of Public Health

View shared research outputs
Top Co-Authors

Avatar

Mari Samuelsen

Norwegian Institute of Public Health

View shared research outputs
Top Co-Authors

Avatar

Monica Andreassen

Norwegian Institute of Public Health

View shared research outputs
Top Co-Authors

Avatar

Amrit Kaur Sakhi

Norwegian Institute of Public Health

View shared research outputs
Top Co-Authors

Avatar

Cathrine Thomsen

Norwegian Institute of Public Health

View shared research outputs
Top Co-Authors

Avatar

Else-Carin Groeng

Norwegian Institute of Public Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge