Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Unni Cecilie Nygaard is active.

Publication


Featured researches published by Unni Cecilie Nygaard.


Toxicological Sciences | 2009

Single-Walled and Multi-Walled Carbon Nanotubes Promote Allergic Immune Responses in Mice

Unni Cecilie Nygaard; Jitka Stilund Hansen; Mari Samuelsen; Torunn Alberg; Calin Daniel Marioara; Martinus Løvik

The adjuvant effect of particles on allergic immune responses has been shown to increase with decreasing particle size and increasing particle surface area. Like ultrafine particles, carbon nanotubes (CNTs) have nano-sized dimensions and a large relative surface area and might thus increase allergic responses. Therefore, we examined whether single-walled (sw) and multi-walled (mw) CNTs have the capacity to promote allergic responses in mice, first in an sc injection model and thereafter in an intranasal model. Balb/cA mice were exposed to three doses of swCNT, mwCNT, as well as ultrafine carbon black particles (ufCBPs, Printex90) during sensitization with the allergen ovalbumin (OVA). Five days after an OVA booster, OVA-specific IgE, IgG1, and IgG2a antibodies in serum and the numbers of inflammatory cells and cytokine levels in bronchoalveolar lavage fluid (BALF) were determined. Furthermore, ex vivo OVA-induced cytokine release from mediastinal lymph node (MLN) cells was measured. In separate experiments, differential cell counts were determined in BALF 24 h after a single intranasal exposure to the particles in the absence of allergen. We demonstrate that both swCNT and mwCNT together with OVA strongly increased serum levels of OVA-specific IgE, the number of eosinophils in BALF, and the secretion of Th2-associated cytokines in the MLN. On the other hand, only mwCNT and ufCBP with OVA increased IgG2a levels, neutrophil cell numbers, and tumor necrosis factor-alpha and monocyte chemoattractant protein-1 levels in BALF, as well as the acute influx of neutrophils after exposure to the particles alone. This study demonstrates that CNTs promote allergic responses in mice.


Journal of Immunotoxicology | 2013

Pre-natal exposure to perfluoroalkyl substances may be associated with altered vaccine antibody levels and immune-related health outcomes in early childhood

Berit Granum; Line Småstuen Haug; Ellen Namork; Solvor B. Stølevik; Cathrine Thomsen; Ingeborg S. Aaberge; Henk van Loveren; Martinus Løvik; Unni Cecilie Nygaard

Abstract Perfluoroalkyl substances (PFAS) are suggested to have immunosuppressive effects; exposure in utero and in the first years of life is of special concern as fetuses and small children are highly vulnerable to toxicant exposure. The objective of this study was to investigate the effect of pre-natal exposure to PFAS on responses to pediatric vaccines and immune-related health outcomes in children up to 3 years of age. In the prospective birth-cohort BraMat, a sub-cohort of the Norwegian Mother and Child Cohort Study (MoBa), pregnant women from Oslo and Akershus, Norway, were recruited during 2007–2008. Three annual questionnaire-based follow-ups were performed. Blood samples were collected from the mothers at the time of delivery and from the children at the age of 3 years. As a measure of pre-natal exposure to PFAS, the concentrations of perfluorooctanoate (PFOA), perfluorononanoate (PFNA), perfluorohexane sulfonate (PFHxS), and perfluorooctane sulfonate (PFOS) were determined in maternal blood from 99 BraMat participants. Main outcome measures were anti-vaccine antibody levels, common infectious diseases and allergy- and asthma-related health outcomes in the children up to the age of 3 years. There was an inverse association between the level of anti-rubella antibodies in the children’s serum at age 3 years and the concentrations of the four PFAS. Furthermore, there was a positive association between the maternal concentrations of PFOA and PFNA and the number of episodes of common cold for the children, and between PFOA and PFHxS and the number of episodes of gastroenteritis. No associations were found between maternal PFAS concentrations and the allergy- and asthma-related health outcomes investigated. The results indicate that pre-natal exposure to PFAS may be associated with immunosuppression in early childhood.


Food and Chemical Toxicology | 2011

Prenatal exposure to polychlorinated biphenyls and dioxins is associated with increased risk of wheeze and infections in infants

Solvor B. Stølevik; Unni Cecilie Nygaard; Ellen Namork; Margaretha Haugen; Helen Engelstad Kvalem; Helle Margrete Meltzer; Jan Alexander; Joost H.M. van Delft; Henk van Loveren; Martinus Løvik; Berit Granum

The birth cohort BraMat (n = 205; a sub-cohort of the Norwegian Mother and Child Cohort Study (MoBa) conducted by the Norwegian Institute of Public Health) was established to study whether prenatal exposure to toxicants from the maternal diet affects immunological health outcomes in children. We here report on the environmental pollutants polychlorinated biphenyls (PCBs) and dioxins, as well as acrylamide generated in food during heat treatment. The frequency of common infections, eczema or itchiness, and periods of more than 10 days of dry cough, chest tightness or wheeze (called wheeze) in the children during the first year of life was assessed by questionnaire data (n = 195). Prenatal dietary exposure to the toxicants was estimated using a validated food frequency questionnaire from MoBa. Prenatal exposure to PCBs and dioxins was found to be associated with increased risk of wheeze and exanthema subitum, and also with increased frequency of upper respiratory tract infections. We found no associations between prenatal exposure to acrylamide and the health outcomes investigated. Our results suggest that prenatal dietary exposure to dioxins and PCBs may increase the risk of wheeze and infectious diseases during the first year of life.


Toxicology | 2008

Allergy adjuvant effect of particles from wood smoke and road traffic

Mari Samuelsen; Unni Cecilie Nygaard; Martinus Løvik

There is growing evidence that in addition to augmenting the severity of asthma and allergic diseases, particulate air pollution also increases the incidence of allergy and asthma. We studied the adjuvant effect of particles from wood smoke and road traffic on the immune response to the allergen ovalbumin (OVA). OVA with and without particles was injected into one hind footpad of Balb/cA mice. All particles together with OVA significantly increased the level of OVA-specific immunoglobulin E (IgE) in serum, compared to groups given OVA or particles alone. Reference diesel exhaust particles (DEP) with OVA induced the highest levels of IgE, whereas no clear difference was observed between particles from road traffic and wood smoke. Road traffic particles collected in the autumn induced higher IgE values with OVA than corresponding particles collected during the winter season when studded tires are used, suggesting that studded tire-generated road pavement particles have less allergy adjuvant activity than exhaust particles. Compared to OVA or particles alone, all particles with OVA increased popliteal lymph node cell numbers, cell proliferation, ex vivo secretion of IL-4 and IL-10 after ConA stimulation, and the expression of several cell surface molecules (CD19, MHC class II, CD86 and CD23). Wood smoke particles with OVA induced somewhat higher cellular responses than road traffic particles, but less than DEP with OVA which seemed to be the most potent particle in inducing cellular as well as antibody responses. Thus, wood smoke particles had about the same capacity to enhance allergic sensitization as road traffic particles, but less than diesel exhaust particles.


Immunopharmacology and Immunotoxicology | 2013

Long-term bisphenol A exposure accelerates insulitis development in diabetes-prone NOD mice

Johanna Bodin; Anette Kocbach Bølling; Mari Samuelsen; Rune Becher; Martinus Løvik; Unni Cecilie Nygaard

Abstract Exposure to the endocrine disruptor (ED) bisphenol A (BPA) used in polycarbonate plastic and epoxy resins appears ubiquitous since BPA can be found in over 90% of analyzed urine samples from all age groups. There is a parallel occurrence of increased prevalence in type 1 diabetes mellitus (T1DM) and an increased exposure to EDs the last decades. T1DM is caused by insulin deficiency due to autoimmune destruction of insulin producing pancreatic beta cells and has been suggested to be induced by various environmental factors acting together with a genetic predisposition. The objective of the present study was to investigate the effect of BPA (0, 1 and 100 mg/l BPA in the drinking water) on T1DM development in nonobese diabetic (NOD) mice, spontaneously developing T1DM. Histological evaluation of pancreas from 12-weeks-old female mice revealed significantly increased insulitis in mice exposed to 1 mg/l BPA, while the insulitis was less severe at the higher BPA exposure. Serum glucose levels in the 1 mg/ml BPA group tended to be hyperglycaemic, also indicating an accelerated onset of T1DM. The high BPA exposure seemed to counteract the diabetes development in females and also in male NOD mice for both BPA concentrations. Prior to insulitis, both BPA concentrations resulted in increased apoptosis and reduced numbers of tissue resident macrophages in pancreatic islets. In conclusion, long-term BPA exposure at a dose three times higher than the tolerable daily intake of 50 µg/kg, appeared to accelerate spontaneous insulitis and diabetes development in NOD mice.


Food and Chemical Toxicology | 2013

Prenatal exposure to polychlorinated biphenyls and dioxins from the maternal diet may be associated with immunosuppressive effects that persist into early childhood.

Solvor B. Stølevik; Unni Cecilie Nygaard; Ellen Namork; Margaretha Haugen; Helle Margrete Meltzer; Jan Alexander; Helle Katrine Knutsen; Ingeborg S. Aaberge; Kirsti Vainio; Henk van Loveren; Martinus Løvik; Berit Granum

We investigated whether prenatal exposure from the maternal diet to the toxicants polychlorinated biphenyls (PCBs) and dioxins is associated with the development of immune-related diseases in childhood. Children participating in BraMat, a sub-cohort of the Norwegian Mother and Child Cohort Study (MoBa), were followed in the three first years of life using annual questionnaires (0-3years; n=162, 2-3years; n=180), and blood parameters were examined at three years of age (n=114). The maternal intake of the toxicants was calculated using a validated food frequency questionnaire from MoBa. Maternal exposure to PCBs and dioxins was found to be associated with an increased risk of wheeze and more frequent upper respiratory tract infections. Furthermore, maternal exposure to PCBs and dioxins was found to be associated with reduced antibody response to a measles vaccine. No associations were found between prenatal exposure and immunophenotype data, allergic sensitization and vaccine-induced antibody responses other than measles. Our results suggest that prenatal dietary exposure to PCBs and dioxins may increase the risk of wheeze and the susceptibility to infectious diseases in early childhood.


Toxicological Sciences | 2012

Toxicogenomic profiles in relation to maternal immunotoxic exposure and immune functionality in newborns.

Kevin Hochstenbach; D.M. van Leeuwen; Hans Gmuender; Ralph W.H. Gottschalk; Solvor B. Stølevik; Unni Cecilie Nygaard; Martinus Løvik; Berit Granum; Ellen Namork; Helle Margrete Meltzer; J.C.S. Kleinjans; J.H.M. van Delft; Henk van Loveren

A crucial period for the development of the immune system occurs in utero. This results in a high fetal vulnerability to immunotoxic exposure, and indeed, immunotoxic effects have been reported, demonstrating negative effects on immune-related health outcomes and immune functionality. Within the NewGeneris cohort BraMat, a subcohort of the Norwegian Mother and Child Cohort Study (MoBa), immunotoxicity was demonstrated for polychlorinated biphenyls and dioxins, showing associations between estimated maternal intake levels and reduced measles vaccination responses in the offspring at the age of 3. The present study aimed to investigate this link at the transcriptomic level within the same BraMat cohort. To this end, whole-genome gene expression in cord blood was investigated and found to be associated with maternal Food Frequency Questionnaires-derived exposure estimates and with vaccination responses in children at 3 years of age. Because the literature reports gender specificity in the innate, humoral, and cell-mediated responses to viral vaccines, separate analysis for males and females was conducted. Separate gene sets for male and female neonates were identified, comprising genes significantly correlating with both 2,3,7,8-tetrachlorodibenzodioxin (TCDD) and polychlorinated biphenyls (PCB) exposure and with measles vaccination response. Noteworthy, genes correlating negatively with exposure in general show positive correlations with antibody levels and vice versa. For both sexes, these included immune-related genes, suggesting immunosuppressive effects of maternal exposure to TCDD and PCB at the transcriptomic level in neonates in relation to measles vaccination response 3 years later.


BioMed Research International | 2015

Can Exposure to Environmental Chemicals Increase the Risk of Diabetes Type 1 Development

Johanna Bodin; Lars Christian Stene; Unni Cecilie Nygaard

Type 1 diabetes mellitus (T1DM) is an autoimmune disease, where destruction of beta-cells causes insulin deficiency. The incidence of T1DM has increased in the last decades and cannot entirely be explained by genetic predisposition. Several environmental factors are suggested to promote T1DM, like early childhood enteroviral infections and nutritional factors, but the evidence is inconclusive. Prenatal and early life exposure to environmental pollutants like phthalates, bisphenol A, perfluorinated compounds, PCBs, dioxins, toxicants, and air pollutants can have negative effects on the developing immune system, resulting in asthma-like symptoms and increased susceptibility to childhood infections. In this review the associations between environmental chemical exposure and T1DM development is summarized. Although information on environmental chemicals as possible triggers for T1DM is sparse, we conclude that it is plausible that environmental chemicals can contribute to T1DM development via impaired pancreatic beta-cell and immune-cell functions and immunomodulation. Several environmental factors and chemicals could act together to trigger T1DM development in genetically susceptible individuals, possibly via hormonal or epigenetic alterations. Further observational T1DM cohort studies and animal exposure experiments are encouraged.


BMC Immunology | 2005

The allergy adjuvant effect of particles – genetic factors influence antibody and cytokine responses

Unni Cecilie Nygaard; Audun Aase; Martinus Løvik

BackgroundThere is increasing epidemiological and experimental evidence for an aggravating effect of particulate air pollution on asthma and allergic symptoms and, to a lesser extent, on allergic sensitization. Genetic factors appear to influence not only the magnitude, but also the quality of the adjuvant effect of particles with respect to allergen-specific IgE (Th2-associated) and IgG2a (Th1-associated) responses. In the present study, we aimed to investigate how the genetic background influences the responses to the allergen and particles alone and in combination. We examined how polystyrene particles (PSP) affected the IgE and IgG2a responses against the model allergen ovalbumin (OVA), after subcutaneous injection into the footpad of BALB/cA, BALB/cJ, NIH and C3H/HeN mice, Further, ex vivo IL-4, IFN-γ and IL-10 cytokine secretion by Con A-stimulated cells from the draining popliteal lymph node (PLN) five days after injection of OVA and PSP separately or in combination was determined.ResultsPSP injected with OVA increased the levels of OVA-specific IgE antibodies in all strains examined. In contrast, the IgG2a levels were significantly increased only in NIH and C3H/HeN mice. PSP in the presence of OVA increased cell numbers and IL-4, IL-10 and IFN-γ levels in BALB/cA, NIH and C3H/HeN mice, with the exception of IFN-γ in NIH mice. However, each mouse strain had their unique pattern of response to OVA+PSP, OVA and PSP, and also their unique background cytokine response (i.e. the cytokine response in cells from mice injected with buffer only).ConclusionGenetic factors (i.e. the strain of mice) influenced the susceptibility to the adjuvant effect of PSP on both secondary antibody responses and primary cellular responses in the lymph node, as well as the cellular responses to both OVA and PSP given separately. Interestingly, PSP alone induced cytokine responses in the lymph node in some of the mouse strains. Furthermore, we found that the ex vivo cytokine patterns did not predict the in vivo Th2- and Th1-associated antibody response patterns in the different mouse strains. The results indicate that insoluble particles act by increasing the inherent response to the allergen, and that the genetic background may determine whether an additional Th1-associated component is added to the response.


Cancer Epidemiology, Biomarkers & Prevention | 2012

Global Gene Expression Analysis in Cord Blood Reveals Gender-Specific Differences in Response to Carcinogenic Exposure In Utero

Kevin Hochstenbach; Danitsja M. van Leeuwen; Hans Gmuender; Ralf R.W. Gottschalk; Martinus Løvik; Berit Granum; Unni Cecilie Nygaard; Ellen Namork; Micheline Kirsch-Volders; Ilse Decordier; Kim Vande Loock; Harrie Besselink; Margareta Törnqvist; Hans von Stedingk; Per Rydberg; Jos Kleinjans; Henk van Loveren; Joost H.M. van Delft

Background: It has been suggested that fetal carcinogenic exposure might lead to predisposition to develop cancer during childhood or in later life possibly through modulation of the fetal transcriptome. Because gender effects in the incidence of childhood cancers have been described, we hypothesized differences at the transcriptomic level in cord blood between male and female newborns as a consequence of fetal carcinogenic exposure. The objective was to investigate whether transcriptomic responses to dietary genotoxic and nongenotoxic carcinogens show gender-specific mechanisms-of-action relevant for chemical carcinogenesis. Methods: Global gene expression was applied in umbilical cord blood samples, the CALUX-assay was used for measuring dioxin(-like), androgen(-like), and estrogen(-like) internal exposure, and acrylamide–hemoglobin adduct levels were determined by mass spectrometry adduct-FIRE-procedureTM. To link gene expression to an established phenotypic biomarker of cancer risk, micronuclei frequencies were investigated. Results: While exposure levels did not differ between sexes at birth, important gender-specific differences were observed in gene expressions associated with these exposures linked with cell cycle, the immune system and more general cellular processes such as posttranslation. Moreover, oppositely correlating leukemia/lymphoma genes between male and female newborns were identified in relation to the different biomarkers of exposure that might be relevant to male-specific predisposition to develop these cancers in childhood. Conclusions/Impact: This study reveals different transcriptomic responses to environmental carcinogens between the sexes. In particular, male-specific TNF-alpha-NF-kB signaling upon dioxin exposure and activation of the Wnt-pathway in boys upon acrylamide exposure might represent possible mechanistic explanations for gender specificity in the incidence of childhood leukemia. Cancer Epidemiol Biomarkers Prev; 21(10); 1756–67. ©2012 AACR.

Collaboration


Dive into the Unni Cecilie Nygaard's collaboration.

Top Co-Authors

Avatar

Martinus Løvik

Norwegian Institute of Public Health

View shared research outputs
Top Co-Authors

Avatar

Ellen Namork

Norwegian Institute of Public Health

View shared research outputs
Top Co-Authors

Avatar

Berit Granum

Norwegian Institute of Public Health

View shared research outputs
Top Co-Authors

Avatar

Johanna Bodin

Norwegian Institute of Public Health

View shared research outputs
Top Co-Authors

Avatar

Monica Andreassen

Norwegian Institute of Public Health

View shared research outputs
Top Co-Authors

Avatar

Anette Kocbach Bølling

Norwegian Institute of Public Health

View shared research outputs
Top Co-Authors

Avatar

Mari Samuelsen

Norwegian Institute of Public Health

View shared research outputs
Top Co-Authors

Avatar

Rune Becher

Norwegian Institute of Public Health

View shared research outputs
Top Co-Authors

Avatar

Solvor B. Stølevik

Norwegian Institute of Public Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge