Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Johanna Jakobsdottir is active.

Publication


Featured researches published by Johanna Jakobsdottir.


American Journal of Human Genetics | 2005

Susceptibility Genes for Age-Related Maculopathy (ARM) on Chromosome 10q26

Johanna Jakobsdottir; Yvette P. Conley; Daniel E. Weeks; Tammy S. Mah; Robert E. Ferrell; Michael B. Gorin

On the basis of genomewide linkage studies of families affected with age-related maculopathy (ARM), we previously identified a significant linkage peak on 10q26, which has been independently replicated by several groups. We performed a focused SNP genotyping study of our families and an additional control cohort. We identified a strong association signal overlying three genes, PLEKHA1, LOC387715, and PRSS11. All nonsynonymous SNPs in this critical region were genotyped, yielding a highly significant association (P < .00001) between PLEKHA1/LOC387715 and ARM. Although it is difficult to determine statistically which of these two genes is most important, SNPs in PLEKHA1 are more likely to account for the linkage signal in this region than are SNPs in LOC387715; thus, this gene and its alleles are implicated as an important risk factor for ARM. We also found weaker evidence supporting the possible involvement of the GRK5/RGS10 locus in ARM. These associations appear to be independent of the association of ARM with the Y402H allele of complement factor H, which has previously been reported as a major susceptibility factor for ARM. The combination of our analyses strongly implicates PLEKHA1/LOC387715 as primarily responsible for the evidence of linkage of ARM to the 10q26 locus and as a major contributor to ARM susceptibility. The association of either a single or a double copy of the high-risk allele within the PLEKHA1/LOC387715 locus accounts for an odds ratio of 5.0 (95% confidence interval 3.2-7.9) for ARM and a population attributable risk as high as 57%.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Genetic variants near TIMP3 and high-density lipoprotein–associated loci influence susceptibility to age-related macular degeneration

Wei Chen; Dwight Stambolian; Albert O. Edwards; Kari Branham; Mohammad Othman; Johanna Jakobsdottir; Nirubol Tosakulwong; Margaret A. Pericak-Vance; Peter A. Campochiaro; Michael L. Klein; Perciliz L. Tan; Yvette P. Conley; Atsuhiro Kanda; Laura J. Kopplin; Yanming Li; Katherine J. Augustaitis; Athanasios J. Karoukis; William K. Scott; Anita Agarwal; Jaclyn L. Kovach; Stephen G. Schwartz; Eric A. Postel; Matthew Brooks; Keith H. Baratz; William L. Brown; Alexander J. Brucker; Anton Orlin; Gary C. Brown; Allen C. Ho; Carl D. Regillo

We executed a genome-wide association scan for age-related macular degeneration (AMD) in 2,157 cases and 1,150 controls. Our results validate AMD susceptibility loci near CFH (P < 10−75), ARMS2 (P < 10−59), C2/CFB (P < 10−20), C3 (P < 10−9), and CFI (P < 10−6). We compared our top findings with the Tufts/Massachusetts General Hospital genome-wide association study of advanced AMD (821 cases, 1,709 controls) and genotyped 30 promising markers in additional individuals (up to 7,749 cases and 4,625 controls). With these data, we identified a susceptibility locus near TIMP3 (overall P = 1.1 × 10−11), a metalloproteinase involved in degradation of the extracellular matrix and previously implicated in early-onset maculopathy. In addition, our data revealed strong association signals with alleles at two loci (LIPC, P = 1.3 × 10−7; CETP, P = 7.4 × 10−7) that were previously associated with high-density lipoprotein cholesterol (HDL-c) levels in blood. Consistent with the hypothesis that HDL metabolism is associated with AMD pathogenesis, we also observed association with AMD of HDL-c—associated alleles near LPL (P = 3.0 × 10−3) and ABCA1 (P = 5.6 × 10−4). Multilocus analysis including all susceptibility loci showed that 329 of 331 individuals (99%) with the highest-risk genotypes were cases, and 85% of these had advanced AMD. Our studies extend the catalog of AMD associated loci, help identify individuals at high risk of disease, and provide clues about underlying cellular pathways that should eventually lead to new therapies.


PLOS Genetics | 2009

Interpretation of Genetic Association Studies: Markers with Replicated Highly Significant Odds Ratios May Be Poor Classifiers

Johanna Jakobsdottir; Michael B. Gorin; Yvette P. Conley; Robert E. Ferrell; Daniel E. Weeks

Recent successful discoveries of potentially causal single nucleotide polymorphisms (SNPs) for complex diseases hold great promise, and commercialization of genomics in personalized medicine has already begun. The hope is that genetic testing will benefit patients and their families, and encourage positive lifestyle changes and guide clinical decisions. However, for many complex diseases, it is arguable whether the era of genomics in personalized medicine is here yet. We focus on the clinical validity of genetic testing with an emphasis on two popular statistical methods for evaluating markers. The two methods, logistic regression and receiver operating characteristic (ROC) curve analysis, are applied to our age-related macular degeneration dataset. By using an additive model of the CFH, LOC387715, and C2 variants, the odds ratios are 2.9, 3.4, and 0.4, with p-values of 10−13, 10−13, and 10−3, respectively. The area under the ROC curve (AUC) is 0.79, but assuming prevalences of 15%, 5.5%, and 1.5% (which are realistic for age groups 80 y, 65 y, and 40 y and older, respectively), only 30%, 12%, and 3% of the group classified as high risk are cases. Additionally, we present examples for four other diseases for which strongly associated variants have been discovered. In type 2 diabetes, our classification model of 12 SNPs has an AUC of only 0.64, and two SNPs achieve an AUC of only 0.56 for prostate cancer. Nine SNPs were not sufficient to improve the discrimination power over that of nongenetic predictors for risk of cardiovascular events. Finally, in Crohns disease, a model of five SNPs, one with a quite low odds ratio of 0.26, has an AUC of only 0.66. Our analyses and examples show that strong association, although very valuable for establishing etiological hypotheses, does not guarantee effective discrimination between cases and controls. The scientific community should be cautious to avoid overstating the value of association findings in terms of personalized medicine before their time.


PLOS ONE | 2008

C2 and CFB Genes in Age-Related Maculopathy and Joint Action with CFH and LOC387715 Genes

Johanna Jakobsdottir; Yvette P. Conley; Daniel E. Weeks; Robert E. Ferrell; Michael B. Gorin

Background Age-related maculopathy (ARM) is a common cause of visual impairment in the elderly populations of industrialized countries and significantly affects the quality of life of those suffering from the disease. Variants within two genes, the complement factor H (CFH) and the poorly characterized LOC387715 (ARMS2), are widely recognized as ARM risk factors. CFH is important in regulation of the alternative complement pathway suggesting this pathway is involved in ARM pathogenesis. Two other complement pathway genes, the closely linked complement component receptor (C2) and complement factor B (CFB), were recently shown to harbor variants associated with ARM. Methods/Principal Findings We investigated two SNPs in C2 and two in CFB in independent case-control and family cohorts of white subjects and found rs547154, an intronic SNP in C2, to be significantly associated with ARM in both our case-control (P-value 0.00007) and family data (P-value 0.00001). Logistic regression analysis suggested that accounting for the effect at this locus significantly (P-value 0.002) improves the fit of a genetic risk model of CFH and LOC387715 effects only. Modeling with the generalized multifactor dimensionality reduction method showed that adding C2 to the two-factor model of CFH and LOC387715 increases the sensitivity (from 63% to 73%). However, the balanced accuracy increases only from 71% to 72%, and the specificity decreases from 80% to 72%. Conclusions/Significance C2/CFB significantly influences AMD susceptibility and although accounting for effects at this locus does not dramatically increase the overall accuracy of the genetic risk model, the improvement over the CFH-LOC387715 model is statistically significant.


Nature Genetics | 2016

Meta-analysis identifies common and rare variants influencing blood pressure and overlapping with metabolic trait loci

Chunyu Liu; Aldi T. Kraja; Jennifer A. Smith; Jennifer A. Brody; Nora Franceschini; Joshua C. Bis; Kenneth Rice; Alanna C. Morrison; Yingchang Lu; Stefan Weiss; Xiuqing Guo; Walter Palmas; Lisa W. Martin; Yii-Der Ida Chen; Praveen Surendran; Fotios Drenos; James P. Cook; Paul L. Auer; Audrey Y. Chu; Ayush Giri; Wei Zhao; Johanna Jakobsdottir; Li An Lin; Jeanette M. Stafford; Najaf Amin; Hao Mei; Jie Yao; Arend Voorman; Martin G. Larson; Megan L. Grove

Meta-analyses of association results for blood pressure using exome-centric single-variant and gene-based tests identified 31 new loci in a discovery stage among 146,562 individuals, with follow-up and meta-analysis in 180,726 additional individuals (total n = 327,288). These blood pressure–associated loci are enriched for known variants for cardiometabolic traits. Associations were also observed for the aggregation of rare and low-frequency missense variants in three genes, NPR1, DBH, and PTPMT1. In addition, blood pressure associations at 39 previously reported loci were confirmed. The identified variants implicate biological pathways related to cardiometabolic traits, vascular function, and development. Several new variants are inferred to have roles in transcription or as hubs in protein–protein interaction networks. Genetic risk scores constructed from the identified variants were strongly associated with coronary disease and myocardial infarction. This large collection of blood pressure–associated loci suggests new therapeutic strategies for hypertension, emphasizing a link with cardiometabolic risk.


American Journal of Human Genetics | 2013

MASTOR: Mixed-Model Association Mapping of Quantitative Traits in Samples with Related Individuals

Johanna Jakobsdottir; Mary Sara McPeek

Genetic association studies often sample individuals with known familial relationships in addition to unrelated individuals, and it is common for some individuals to have missing data (phenotypes, genotypes, or covariates). When some individuals in a sample are related, power can be gained by incorporating all individuals in the analysis, including individuals with partially missing data, while properly accounting for the dependence among them. We propose MASTOR, a mixed-model, retrospective score test for genetic association with a quantitative trait. MASTOR achieves high power in samples that contain related individuals by making full use of the relationship information to incorporate partially missing data in the analysis while correcting for dependence. Individuals with available phenotype and covariate information who are not genotyped but have genotyped relatives in the sample can still contribute to the association analysis because of the dependence among genotypes. Similarly, individuals who are genotyped but are missing covariate or phenotype information can contribute to the analysis. MASTOR is valid even when the phenotype model is misspecified and with either random or phenotype-based ascertainment. In simulations, we demonstrate the correct type 1 error of MASTOR, the increase in power that comes from making full use of the relationship information, the robustness to misspecification of the phenotype model, and the improvement in power that comes from modeling the heritability. We show that MASTOR is computationally feasible and practical in genome-wide association studies. We apply MASTOR to data on high-density lipoprotein cholesterol from the Framingham Heart study.


Journal of Alzheimer's Disease | 2016

Evaluation of a Genetic Risk Score to Improve Risk Prediction for Alzheimer’s Disease

Vincent Chouraki; Christiane Reitz; Fleur Maury; Joshua C. Bis; Céline Bellenguez; Lei Yu; Johanna Jakobsdottir; Shubhabrata Mukherjee; Hieab H.H. Adams; Seung Hoan Choi; Eric B. Larson; Annette L. Fitzpatrick; André G. Uitterlinden; Philip L. De Jager; Albert Hofman; Vilmundur Gudnason; Badri N. Vardarajan; Carla A. Ibrahim-Verbaas; Sven J. van der Lee; Oscar L. Lopez; Jean-François Dartigues; Claudine Berr; Philippe Amouyel; David A. Bennett; Cornelia van Duijn; Anita L. DeStefano; Lenore J. Launer; M. Arfan Ikram; Paul K. Crane; Jean-Charles Lambert

Effective prevention of Alzheimers disease (AD) requires the development of risk prediction tools permitting preclinical intervention. We constructed a genetic risk score (GRS) comprising common genetic variants associated with AD, evaluated its association with incident AD and assessed its capacity to improve risk prediction over traditional models based on age, sex, education, and APOEɛ4. In eight prospective cohorts included in the International Genomics of Alzheimers Project (IGAP), we derived weighted sum of risk alleles from the 19 top SNPs reported by the IGAP GWAS in participants aged 65 and older without prevalent dementia. Hazard ratios (HR) of incident AD were estimated in Cox models. Improvement in risk prediction was measured by the difference in C-index (Δ-C), the integrated discrimination improvement (IDI) and continuous net reclassification improvement (NRI>0). Overall, 19,687 participants at risk were included, of whom 2,782 developed AD. The GRS was associated with a 17% increase in AD risk (pooled HR = 1.17; 95% CI =   [1.13-1.21] per standard deviation increase in GRS; p-value =  2.86×10-16). This association was stronger among persons with at least one APOEɛ4 allele (HRGRS = 1.24; 95% CI =   [1.15-1.34]) than in others (HRGRS = 1.13; 95% CI =   [1.08-1.18]; pinteraction = 3.45×10-2). Risk prediction after seven years of follow-up showed a small improvement when adding the GRS to age, sex, APOEɛ4, and education (Δ-Cindex =  0.0043 [0.0019-0.0067]). Similar patterns were observed for IDI and NRI>0. In conclusion, a risk score incorporating common genetic variation outside the APOEɛ4 locus improved AD risk prediction and may facilitate risk stratification for prevention trials.


PLOS Genetics | 2016

Rare Functional Variant in TM2D3 is Associated with Late-Onset Alzheimer's Disease

Johanna Jakobsdottir; Sven J. van der Lee; Joshua C. Bis; Vincent Chouraki; David Li-Kroeger; Shinya Yamamoto; Megan L. Grove; Adam C. Naj; Maria Vronskaya; Jose L. Salazar; Anita L. DeStefano; Jennifer A. Brody; Albert V. Smith; Najaf Amin; Rebecca Sims; Carla A. Ibrahim-Verbaas; Seung-Hoan Choi; Claudia L. Satizabal; Oscar L. Lopez; Alexa Beiser; M. Arfan Ikram; Melissa Garcia; Caroline Hayward; Tibor V. Varga; Samuli Ripatti; Paul W. Franks; Göran Hallmans; Olov Rolandsson; Jan-Hakon Jansson; David J. Porteous

We performed an exome-wide association analysis in 1393 late-onset Alzheimer’s disease (LOAD) cases and 8141 controls from the CHARGE consortium. We found that a rare variant (P155L) in TM2D3 was enriched in Icelanders (~0.5% versus <0.05% in other European populations). In 433 LOAD cases and 3903 controls from the Icelandic AGES sub-study, P155L was associated with increased risk and earlier onset of LOAD [odds ratio (95% CI) = 7.5 (3.5–15.9), p = 6.6x10-9]. Mutation in the Drosophila TM2D3 homolog, almondex, causes a phenotype similar to loss of Notch/Presenilin signaling. Human TM2D3 is capable of rescuing these phenotypes, but this activity is abolished by P155L, establishing it as a functionally damaging allele. Our results establish a rare TM2D3 variant in association with LOAD susceptibility, and together with prior work suggests possible links to the β-amyloid cascade.


Journal of Bone and Mineral Research | 2016

Novel Genetic Variants Associated With Increased Vertebral Volumetric BMD, Reduced Vertebral Fracture Risk, and Increased Expression of SLC1A3 and EPHB2.

Carrie M. Nielson; Ching-Ti Liu; Albert V. Smith; Cheryl L. Ackert-Bicknell; Sjur Reppe; Johanna Jakobsdottir; Christina L. Wassel; Thomas C. Register; Ling Oei; Nerea Alonso; Edwin H. G. Oei; Neeta Parimi; Elizabeth J. Samelson; Michael A. Nalls; Joseph M. Zmuda; Thomas Lang; Mary L. Bouxsein; Jeanne C. Latourelle; Melina Claussnitzer; Kristin Siggeirsdottir; Priya Srikanth; Erik Lorentzen; Liesbeth Vandenput; Carl D. Langefeld; Laura M. Raffield; Greg Terry; Amanda J. Cox; Matthew A. Allison; Michael H. Criqui; Bowden Dw

Genome‐wide association studies (GWASs) have revealed numerous loci for areal bone mineral density (aBMD). We completed the first GWAS meta‐analysis (n = 15,275) of lumbar spine volumetric BMD (vBMD) measured by quantitative computed tomography (QCT), allowing for examination of the trabecular bone compartment. SNPs that were significantly associated with vBMD were also examined in two GWAS meta‐analyses to determine associations with morphometric vertebral fracture (n = 21,701) and clinical vertebral fracture (n = 5893). Expression quantitative trait locus (eQTL) analyses of iliac crest biopsies were performed in 84 postmenopausal women, and murine osteoblast expression of genes implicated by eQTL or by proximity to vBMD‐associated SNPs was examined. We identified significant vBMD associations with five loci, including: 1p36.12, containing WNT4 and ZBTB40; 8q24, containing TNFRSF11B; and 13q14, containing AKAP11 and TNFSF11. Two loci (5p13 and 1p36.12) also contained associations with radiographic and clinical vertebral fracture, respectively. In 5p13, rs2468531 (minor allele frequency [MAF] = 3%) was associated with higher vBMD (β = 0.22, p = 1.9 × 10–8) and decreased risk of radiographic vertebral fracture (odds ratio [OR] = 0.75; false discovery rate [FDR] p = 0.01). In 1p36.12, rs12742784 (MAF = 21%) was associated with higher vBMD (β = 0.09, p = 1.2 × 10–10) and decreased risk of clinical vertebral fracture (OR = 0.82; FDR p = 7.4 × 10–4). Both SNPs are noncoding and were associated with increased mRNA expression levels in human bone biopsies: rs2468531 with SLC1A3 (β = 0.28, FDR p = 0.01, involved in glutamate signaling and osteogenic response to mechanical loading) and rs12742784 with EPHB2 (β = 0.12, FDR p = 1.7 × 10–3, functions in bone‐related ephrin signaling). Both genes are expressed in murine osteoblasts. This is the first study to link SLC1A3 and EPHB2 to clinically relevant vertebral osteoporosis phenotypes. These results may help elucidate vertebral bone biology and novel approaches to reducing vertebral fracture incidence.


Investigative Ophthalmology & Visual Science | 2011

Dissection of Chromosome 16p12 Linkage Peak Suggests a Possible Role for CACNG3 Variants in Age-Related Macular Degeneration Susceptibility

Kylee L. Spencer; Lana M. Olson; Nathalie Schnetz-Boutaud; Paul Gallins; Gaofeng Wang; William K. Scott; Anita Agarwal; Johanna Jakobsdottir; Yvette P. Conley; Daniel E. Weeks; Michael B. Gorin; Margaret A. Pericak-Vance; Jonathan L. Haines

PURPOSE Age-related macular degeneration (AMD) is a complex disorder of the retina, characterized by drusen, geographic atrophy, and choroidal neovascularization. Cigarette smoking and the genetic variants CFH Y402H, ARMS2 A69S, CFB R32Q, and C3 R102G have been strongly and consistently associated with AMD. Multiple linkage studies have found evidence suggestive of another AMD locus on chromosome 16p12 but the gene responsible has yet to be identified. METHODS In the initial phase of the study, single-nucleotide polymorphisms (SNPs) across chromosome 16 were examined for linkage and/or association in 575 Caucasian individuals from 148 multiplex and 77 singleton families. Additional variants were tested in an independent dataset of unrelated cases and controls. According to these results, in combination with gene expression data and biological knowledge, five genes were selected for further study: CACNG3, HS3ST4, IL4R, Q7Z6F8, and ITGAM. RESULTS After genotyping additional tagging SNPs across each gene, the strongest evidence for linkage and association was found within CACNG3 (rs757200 nonparametric LOD* = 3.3, APL (association in the presence of linkage) P = 0.06, and rs2238498 MQLS (modified quasi-likelihood score) P = 0.006 in the families; rs2283550 P = 1.3 × 10(-6), and rs4787924 P = 0.002 in the case-control dataset). After adjusting for known AMD risk factors, rs2283550 remained strongly associated (P = 2.4 × 10(-4)). Furthermore, the association signal at rs4787924 was replicated in an independent dataset (P = 0.035) and in a joint analysis of all the data (P = 0.001). CONCLUSIONS These results suggest that CACNG3 is the best candidate for an AMD risk gene within the 16p12 linkage peak. More studies are needed to confirm this association and clarify the role of the gene in AMD pathogenesis.

Collaboration


Dive into the Johanna Jakobsdottir's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joshua C. Bis

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Lenore J. Launer

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sven J. van der Lee

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge