Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joshua C. Bis is active.

Publication


Featured researches published by Joshua C. Bis.


Nature Genetics | 2010

Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci

Andre Franke; Dermot McGovern; Jeffrey C. Barrett; Kai Wang; Graham L. Radford-Smith; Tariq Ahmad; Charlie W. Lees; Tobias Balschun; James C. Lee; Rebecca L. Roberts; Carl A. Anderson; Joshua C. Bis; Suzanne Bumpstead; David Ellinghaus; Eleonora M. Festen; Michel Georges; Todd Green; Talin Haritunians; Luke Jostins; Anna Latiano; Christopher G. Mathew; Grant W. Montgomery; Natalie J. Prescott; Soumya Raychaudhuri; Jerome I. Rotter; Philip Schumm; Yashoda Sharma; Lisa A. Simms; Kent D. Taylor; David C. Whiteman

We undertook a meta-analysis of six Crohns disease genome-wide association studies (GWAS) comprising 6,333 affected individuals (cases) and 15,056 controls and followed up the top association signals in 15,694 cases, 14,026 controls and 414 parent-offspring trios. We identified 30 new susceptibility loci meeting genome-wide significance (P < 5 × 10−8). A series of in silico analyses highlighted particular genes within these loci and, together with manual curation, implicated functionally interesting candidate genes including SMAD3, ERAP2, IL10, IL2RA, TYK2, FUT2, DNMT3A, DENND1B, BACH2 and TAGAP. Combined with previously confirmed loci, these results identify 71 distinct loci with genome-wide significant evidence for association with Crohns disease.


Nature Genetics | 2009

Genome-wide association study of blood pressure and hypertension

Daniel Levy; Georg B. Ehret; Kenneth Rice; Germaine C. Verwoert; Lenore J. Launer; Abbas Dehghan; Nicole L. Glazer; Alanna C. Morrison; Andrew D. Johnson; Thor Aspelund; Yurii S. Aulchenko; Thomas Lumley; Anna Köttgen; Fernando Rivadeneira; Gudny Eiriksdottir; Xiuqing Guo; Dan E. Arking; Gary F. Mitchell; Francesco Mattace-Raso; Albert V. Smith; Kent D. Taylor; Robert B. Scharpf; Shih Jen Hwang; Eric J.G. Sijbrands; Joshua C. Bis; Tamara B. Harris; Santhi K. Ganesh; Christopher J. O'Donnell; Albert Hofman; Jerome I. Rotter

Blood pressure is a major cardiovascular disease risk factor. To date, few variants associated with interindividual blood pressure variation have been identified and replicated. Here we report results of a genome-wide association study of systolic (SBP) and diastolic (DBP) blood pressure and hypertension in the CHARGE Consortium (n = 29,136), identifying 13 SNPs for SBP, 20 for DBP and 10 for hypertension at P < 4 × 10−7. The top ten loci for SBP and DBP were incorporated into a risk score; mean BP and prevalence of hypertension increased in relation to the number of risk alleles carried. When ten CHARGE SNPs for each trait were included in a joint meta-analysis with the Global BPgen Consortium (n = 34,433), four CHARGE loci attained genome-wide significance (P < 5 × 10−8) for SBP (ATP2B1, CYP17A1, PLEKHA7, SH2B3), six for DBP (ATP2B1, CACNB2, CSK-ULK3, SH2B3, TBX3-TBX5, ULK4) and one for hypertension (ATP2B1). Identifying genes associated with blood pressure advances our understanding of blood pressure regulation and highlights potential drug targets for the prevention or treatment of hypertension.


JAMA | 2010

Genome-wide Analysis of Genetic Loci Associated With Alzheimer Disease

Sudha Seshadri; Annette L. Fitzpatrick; M. Arfan Ikram; Anita L. DeStefano; Vilmundur Gudnason; Mercè Boada; Joshua C. Bis; Albert V. Smith; Minerva M. Carassquillo; Jean Charles Lambert; Denise Harold; Elisabeth M.C. Schrijvers; Reposo Ramírez-Lorca; Stéphanie Debette; W. T. Longstreth; A. Cecile J. W. Janssens; V. Shane Pankratz; Jean-François Dartigues; Paul Hollingworth; Thor Aspelund; Isabel Hernández; Alexa Beiser; Lewis H. Kuller; Peter J. Koudstaal; Dennis W. Dickson; Christophe Tzourio; Richard Abraham; Carmen Antúnez; Yangchun Du; Jerome I. Rotter

CONTEXT Genome-wide association studies (GWAS) have recently identified CLU, PICALM, and CR1 as novel genes for late-onset Alzheimer disease (AD). OBJECTIVES To identify and strengthen additional loci associated with AD and confirm these in an independent sample and to examine the contribution of recently identified genes to AD risk prediction in a 3-stage analysis of new and previously published GWAS on more than 35,000 persons (8371 AD cases). DESIGN, SETTING, AND PARTICIPANTS In stage 1, we identified strong genetic associations (P < 10(-3)) in a sample of 3006 AD cases and 14,642 controls by combining new data from the population-based Cohorts for Heart and Aging Research in Genomic Epidemiology consortium (1367 AD cases [973 incident]) with previously reported results from the Translational Genomics Research Institute and the Mayo AD GWAS. We identified 2708 single-nucleotide polymorphisms (SNPs) with P < 10(-3). In stage 2, we pooled results for these SNPs with the European AD Initiative (2032 cases and 5328 controls) to identify 38 SNPs (10 loci) with P < 10(-5). In stage 3, we combined data for these 10 loci with data from the Genetic and Environmental Risk in AD consortium (3333 cases and 6995 controls) to identify 4 SNPs with P < 1.7x10(-8). These 4 SNPs were replicated in an independent Spanish sample (1140 AD cases and 1209 controls). Genome-wide association analyses were completed in 2007-2008 and the meta-analyses and replication in 2009. MAIN OUTCOME MEASURE Presence of Alzheimer disease. RESULTS Two loci were identified to have genome-wide significance for the first time: rs744373 near BIN1 (odds ratio [OR],1.13; 95% confidence interval [CI],1.06-1.21 per copy of the minor allele; P = 1.59x10(-11)) and rs597668 near EXOC3L2/BLOC1S3/MARK4 (OR, 1.18; 95% CI, 1.07-1.29; P = 6.45x10(-9)). Associations of these 2 loci plus the previously identified loci CLU and PICALM with AD were confirmed in the Spanish sample (P < .05). However, although CLU and PICALM were confirmed to be associated with AD in this independent sample, they did not improve the ability of a model that included age, sex, and APOE to predict incident AD (improvement in area under the receiver operating characteristic curve from 0.847 to 0.849 in the Rotterdam Study and 0.702 to 0.705 in the Cardiovascular Health Study). CONCLUSIONS Two genetic loci for AD were found for the first time to reach genome-wide statistical significance. These findings were replicated in an independent population. Two recently reported associations were also confirmed. These loci did not improve AD risk prediction. While not clinically useful, they may implicate biological pathways useful for future research.


Nature Genetics | 2014

Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson's disease

Michael A. Nalls; Nathan Pankratz; Christina M. Lill; Chuong B. Do; Dena Hernandez; Mohamad Saad; Anita L. DeStefano; Eleanna Kara; Jose Bras; Manu Sharma; Claudia Schulte; Margaux F. Keller; Sampath Arepalli; Christopher Letson; Connor Edsall; Hreinn Stefansson; Xinmin Liu; Hannah Pliner; Joseph H. Lee; Rong Cheng; M. Arfan Ikram; John P. A. Ioannidis; Georgios M. Hadjigeorgiou; Joshua C. Bis; Maria Martinez; Joel S. Perlmutter; Alison Goate; Karen Marder; Brian K. Fiske; Margaret Sutherland

We conducted a meta-analysis of Parkinsons disease genome-wide association studies using a common set of 7,893,274 variants across 13,708 cases and 95,282 controls. Twenty-six loci were identified as having genome-wide significant association; these and 6 additional previously reported loci were then tested in an independent set of 5,353 cases and 5,551 controls. Of the 32 tested SNPs, 24 replicated, including 6 newly identified loci. Conditional analyses within loci showed that four loci, including GBA, GAK-DGKQ, SNCA and the HLA region, contain a secondary independent risk variant. In total, we identified and replicated 28 independent risk variants for Parkinsons disease across 24 loci. Although the effect of each individual locus was small, risk profile analysis showed substantial cumulative risk in a comparison of the highest and lowest quintiles of genetic risk (odds ratio (OR) = 3.31, 95% confidence interval (CI) = 2.55–4.30; P = 2 × 10−16). We also show six risk loci associated with proximal gene expression or DNA methylation.


The New England Journal of Medicine | 2009

Genomewide Association Studies of Stroke

M. Arfan Ikram; Sudha Seshadri; Joshua C. Bis; Myriam Fornage; Anita L. DeStefano; Yurii S. Aulchenko; Stéphanie Debette; Thomas Lumley; Aaron R. Folsom; Evita G. Van Den Herik; Michiel J. Bos; Alexa Beiser; Mary Cushman; Lenore J. Launer; Eyal Shahar; Maksim Struchalin; Yangchun Du; Nicole L. Glazer; Wayne D. Rosamond; Fernando Rivadeneira; Margaret Kelly-Hayes; Oscar L. Lopez; Josef Coresh; Albert Hofman; Charles DeCarli; Susan R. Heckbert; Peter J. Koudstaal; Qiong Yang; Nicholas L. Smith; Carlos S. Kase

BACKGROUND The genes underlying the risk of stroke in the general population remain undetermined. METHODS We carried out an analysis of genomewide association data generated from four large cohorts composing the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium, including 19,602 white persons (mean [+/-SD] age, 63+/-8 years) in whom 1544 incident strokes (1164 ischemic strokes) developed over an average follow-up of 11 years. We tested the markers most strongly associated with stroke in a replication cohort of 2430 black persons with 215 incident strokes (191 ischemic strokes), another cohort of 574 black persons with 85 incident strokes (68 ischemic strokes), and 652 Dutch persons with ischemic stroke and 3613 unaffected persons. RESULTS Two intergenic single-nucleotide polymorphisms on chromosome 12p13 and within 11 kb of the gene NINJ2 were associated with stroke (P<5x10(-8)). NINJ2 encodes an adhesion molecule expressed in glia and shows increased expression after nerve injury. Direct genotyping showed that rs12425791 was associated with an increased risk of total (i.e., all types) and ischemic stroke, with hazard ratios of 1.30 (95% confidence interval [CI], 1.19 to 1.42) and 1.33 (95% CI, 1.21 to 1.47), respectively, yielding population attributable risks of 11% and 12% in the discovery cohorts. Corresponding hazard ratios were 1.35 (95% CI, 1.01 to 1.79; P=0.04) and 1.42 (95% CI, 1.06 to 1.91; P=0.02) in the large cohort of black persons and 1.17 (95% CI, 1.01 to 1.37; P=0.03) and 1.19 (95% CI, 1.01 to 1.41; P=0.04) in the Dutch sample; the results of an underpowered analysis of the smaller black cohort were nonsignificant. CONCLUSIONS A genetic locus on chromosome 12p13 is associated with an increased risk of stroke.


Nature Genetics | 2009

Common variants at ten loci influence QT interval duration in the QTGEN Study.

Christopher Newton-Cheh; Mark Eijgelsheim; Kenneth Rice; Paul I. W. de Bakker; Xiaoyan Yin; Karol Estrada; Joshua C. Bis; Kristin D. Marciante; Fernando Rivadeneira; Peter A. Noseworthy; Nona Sotoodehnia; Nicholas L. Smith; Jerome I. Rotter; Jan A. Kors; Jacqueline C. M. Witteman; Albert Hofman; Susan R. Heckbert; Christopher J. O'Donnell; André G. Uitterlinden; Bruce M. Psaty; Thomas Lumley; Martin G. Larson; Bruno H. Stricker

QT interval duration reflecting myocardial repolarization on the electrocardiogram is a heritable risk factor for sudden cardiac death and drug-induced arrhythmias. We conducted a meta-analysis of 3 genome-wide association studies in 13,685 individuals of European ancestry from the Framingham Heart Study, the Rotterdam Study and the Cardiovascular Health Study. We observed associations at P < 5×10−8 with variants in NOS1AP, KCNQ1, KCNE1, KCNH2 and SCN5A, known to be involved in myocardial repolarization and Mendelian Long QT Syndromes. Associations at five novel loci included 16q21 near NDRG4 and GINS3, 6q22 near PLN, 1p36 near RNF207, 16p13 near LITAF and 17q12 near LIG3 and RIFFL. Collectively, the 14 independent variants at these 10 loci explain 5.4–6.5% of variation in QT interval. Identifying the causal variants and defining their impact on myocardial repolarization may add incrementally to the prevention of sudden cardiac death and drug-induced arrhythmias.QT interval duration, reflecting myocardial repolarization on the electrocardiogram, is a heritable risk factor for sudden cardiac death and drug-induced arrhythmias. We conducted a meta-analysis of three genome-wide association studies in 13,685 individuals of European ancestry from the Framingham Heart Study, the Rotterdam Study and the Cardiovascular Health Study, as part of the QTGEN consortium. We observed associations at P < 5 × 10−8 with variants in NOS1AP, KCNQ1, KCNE1, KCNH2 and SCN5A, known to be involved in myocardial repolarization and mendelian long-QT syndromes. Associations were found at five newly identified loci, including 16q21 near NDRG4 and GINS3, 6q22 near PLN, 1p36 near RNF207, 16p13 near LITAF and 17q12 near LIG3 and RFFL. Collectively, the 14 independent variants at these 10 loci explain 5.4–6.5% of the variation in QT interval. These results, together with an accompanying paper, offer insights into myocardial repolarization and suggest candidate genes that could predispose to sudden cardiac death and drug-induced arrhythmias.


Nature Genetics | 2012

Meta-analysis identifies six new susceptibility loci for atrial fibrillation

Patrick T. Ellinor; Kathryn L. Lunetta; Christine M. Albert; Nicole L. Glazer; Marylyn D. Ritchie; Albert V. Smith; Dan E. Arking; Martina Müller-Nurasyid; Bouwe P. Krijthe; Steven A. Lubitz; Joshua C. Bis; Mina K. Chung; Marcus Dörr; Kouichi Ozaki; Jason D. Roberts; J. Gustav Smith; Arne Pfeufer; Moritz F. Sinner; Kurt Lohman; Jingzhong Ding; Nicholas L. Smith; Jonathan D. Smith; Michiel Rienstra; Kenneth Rice; David R. Van Wagoner; Jared W. Magnani; Reza Wakili; Sebastian Clauss; Jerome I. Rotter; Gerhard Steinbeck

Atrial fibrillation is a highly prevalent arrhythmia and a major risk factor for stroke, heart failure and death. We conducted a genome-wide association study (GWAS) in individuals of European ancestry, including 6,707 with and 52,426 without atrial fibrillation. Six new atrial fibrillation susceptibility loci were identified and replicated in an additional sample of individuals of European ancestry, including 5,381 subjects with and 10,030 subjects without atrial fibrillation (P < 5 × 10−8). Four of the loci identified in Europeans were further replicated in silico in a GWAS of Japanese individuals, including 843 individuals with and 3,350 individuals without atrial fibrillation. The identified loci implicate candidate genes that encode transcription factors related to cardiopulmonary development, cardiac-expressed ion channels and cell signaling molecules.


Nature Genetics | 2010

Genome-wide association study of PR interval

Arne Pfeufer; Charlotte van Noord; Kristin D. Marciante; Dan E. Arking; Martin G. Larson; Albert V. Smith; Kirill V. Tarasov; Martina Müller; Nona Sotoodehnia; Moritz F. Sinner; Germaine C. Verwoert; Man Li; W.H. Linda Kao; Anna Köttgen; Josef Coresh; Joshua C. Bis; Bruce M. Psaty; Kenneth Rice; Jerome I. Rotter; Fernando Rivadeneira; Albert Hofman; Jan A. Kors; Bruno H. Stricker; André G. Uitterlinden; Cornelia M. van Duijn; Britt M. Beckmann; Wiebke Sauter; Christian Gieger; Steven A. Lubitz; Christopher Newton-Cheh

The electrocardiographic PR interval (or PQ interval) reflects atrial and atrioventricular nodal conduction, disturbances of which increase risk of atrial fibrillation. We report a meta-analysis of genome-wide association studies for PR interval from seven population-based European studies in the CHARGE Consortium: AGES, ARIC, CHS, FHS, KORA, Rotterdam Study, and SardiNIA (N = 28,517). We identified nine loci associated with PR interval at P < 5 × 10−8. At the 3p22.2 locus, we observed two independent associations in voltage-gated sodium channel genes, SCN10A and SCN5A. Six of the loci were near cardiac developmental genes, including CAV1-CAV2, NKX2-5 (CSX1), SOX5, WNT11, MEIS1, and TBX5-TBX3, providing pathophysiologically interesting candidate genes. Five of the loci, SCN5A, SCN10A, NKX2-5, CAV1-CAV2, and SOX5, were also associated with atrial fibrillation (N = 5,741 cases, P < 0.0056). This suggests a role for common variation in ion channel and developmental genes in atrial and atrioventricular conduction as well as in susceptibility to atrial fibrillation.


Nature Genetics | 2009

Variants in ZFHX3 are associated with atrial fibrillation in individuals of European ancestry

Emelia J. Benjamin; Kenneth Rice; Dan E. Arking; Arne Pfeufer; Charlotte van Noord; Albert V. Smith; Renate B. Schnabel; Joshua C. Bis; Eric Boerwinkle; Moritz F. Sinner; Abbas Dehghan; Steven A. Lubitz; Ralph B. D'Agostino; Thomas Lumley; Georg B. Ehret; Jan Heeringa; Thor Aspelund; Christopher Newton-Cheh; Martin G. Larson; Kristin D. Marciante; Elsayed Z. Soliman; Fernando Rivadeneira; Thomas J. Wang; Gudny Eiriksdottir; Daniel Levy; Bruce M. Psaty; Man Li; Alanna M. Chamberlain; Albert Hofman; Tamara B. Harris

We conducted meta-analyses of genome-wide association studies for atrial fibrillation (AF) in participants from five community-based cohorts. Meta-analyses of 896 prevalent (15,768 referents) and 2,517 incident (21,337 referents) AF cases identified a new locus for AF (ZFHX3, rs2106261, risk ratio RR = 1.19; P = 2.3 × 10−7). We replicated this association in an independent cohort from the German AF Network (odds ratio = 1.44; P = 1.6 × 10−11; combined RR = 1.25; combined P = 1.8 × 10−15).


Lancet Neurology | 2012

Genetic risk factors for ischaemic stroke and its subtypes (the METASTROKE collaboration): a meta-analysis of genome-wide association studies.

Matthew Traylor; Martin Farrall; Elizabeth G. Holliday; Cathie Sudlow; Jemma C. Hopewell; Yu Ching Cheng; Myriam Fornage; M. Arfan Ikram; Rainer Malik; Steve Bevan; Unnur Thorsteinsdottir; Michael A. Nalls; W. T. Longstreth; Kerri L. Wiggins; Sunaina Yadav; Eugenio Parati; Anita L. DeStefano; Bradford B. Worrall; Steven J. Kittner; Muhammad Saleem Khan; Alex P. Reiner; Anna Helgadottir; Sefanja Achterberg; Israel Fernandez-Cadenas; Shérine Abboud; Reinhold Schmidt; Matthew Walters; Wei-Min Chen; E. Bernd Ringelstein; Martin O'Donnell

Summary Background Various genome-wide association studies (GWAS) have been done in ischaemic stroke, identifying a few loci associated with the disease, but sample sizes have been 3500 cases or less. We established the METASTROKE collaboration with the aim of validating associations from previous GWAS and identifying novel genetic associations through meta-analysis of GWAS datasets for ischaemic stroke and its subtypes. Methods We meta-analysed data from 15 ischaemic stroke cohorts with a total of 12 389 individuals with ischaemic stroke and 62 004 controls, all of European ancestry. For the associations reaching genome-wide significance in METASTROKE, we did a further analysis, conditioning on the lead single nucleotide polymorphism in every associated region. Replication of novel suggestive signals was done in 13 347 cases and 29 083 controls. Findings We verified previous associations for cardioembolic stroke near PITX2 (p=2·8×10−16) and ZFHX3 (p=2·28×10−8), and for large-vessel stroke at a 9p21 locus (p=3·32×10−5) and HDAC9 (p=2·03×10−12). Additionally, we verified that all associations were subtype specific. Conditional analysis in the three regions for which the associations reached genome-wide significance (PITX2, ZFHX3, and HDAC9) indicated that all the signal in each region could be attributed to one risk haplotype. We also identified 12 potentially novel loci at p<5×10−6. However, we were unable to replicate any of these novel associations in the replication cohort. Interpretation Our results show that, although genetic variants can be detected in patients with ischaemic stroke when compared with controls, all associations we were able to confirm are specific to a stroke subtype. This finding has two implications. First, to maximise success of genetic studies in ischaemic stroke, detailed stroke subtyping is required. Second, different genetic pathophysiological mechanisms seem to be associated with different stroke subtypes. Funding Wellcome Trust, UK Medical Research Council (MRC), Australian National and Medical Health Research Council, National Institutes of Health (NIH) including National Heart, Lung and Blood Institute (NHLBI), the National Institute on Aging (NIA), the National Human Genome Research Institute (NHGRI), and the National Institute of Neurological Disorders and Stroke (NINDS).

Collaboration


Dive into the Joshua C. Bis's collaboration.

Top Co-Authors

Avatar

Bruce M. Psaty

Group Health Cooperative

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric Boerwinkle

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Albert Hofman

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Myriam Fornage

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Kenneth Rice

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge