Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Johanna Lundin is active.

Publication


Featured researches published by Johanna Lundin.


European Journal of Medical Genetics | 2009

Extending the phenotype of recurrent rearrangements of 16p11.2: deletions in mentally retarded patients without autism and in normal individuals.

Emilia K. Bijlsma; Antoinet C.J. Gijsbers; J.H.M. Schuurs-Hoeijmakers; A. van Haeringen; D. E. Fransen Van De Putte; Britt-Marie Anderlid; Johanna Lundin; Pablo Lapunzina; L.A. Pérez Jurado; B. Delle Chiaie; Bart Loeys; Björn Menten; A. Oostra; Helene Verhelst; David J. Amor; Damien L. Bruno; A.J. van Essen; Roel Hordijk; Birgit Sikkema-Raddatz; K.T. Verbruggen; Marjolijn C.J. Jongmans; Rolph Pfundt; H.M. Reeser; Martijn H. Breuning; Claudia Ruivenkamp

Array CGH (comparative genomic hybridization) screening of large patient cohorts with mental retardation and/or multiple congenital anomalies (MR/MCA) has led to the identification of a number of new microdeletion and microduplication syndromes. Recently, a recurrent copy number variant (CNV) at chromosome 16p11.2 was reported to occur in up to 1% of autistic patients in three large autism studies. In the screening of 4284 patients with MR/MCA with various array platforms, we detected 22 individuals (14 index patients and 8 family members) with deletions in 16p11.2, which are genomically identical to those identified in the autism studies. Though some patients shared a facial resemblance and a tendency to overweight, there was no evidence for a recognizable phenotype. Autism was not the presenting feature in our series. The assembled evidence indicates that recurrent 16p11.2 deletions are associated with variable clinical outcome, most likely arising from haploinsufficiency of one or more genes. The phenotypical spectrum ranges from MR and/or MCA, autism, learning and speech problems, to a normal phenotype.


Journal of Medical Genetics | 2010

Further molecular and clinical delineation of co-locating 17p13.3 microdeletions and microduplications that show distinctive phenotypes

Damien L. Bruno; Britt Marie Anderlid; Anna Lindstrand; Conny M. A. van Ravenswaaij-Arts; Devika Ganesamoorthy; Johanna Lundin; Christa Lese Martin; Jessica Douglas; Catherine Nowak; Margaret P Adam; R. Frank Kooy; Nathalie Van der Aa; Edwin Reyniers; Geert Vandeweyer; Irene Stolte-Dijkstra; Trijnie Dijkhuizen; Alison Yeung; Martin B. Delatycki; Birgit Borgström; Lena Thelin; Carlos Cardoso; Bregje W.M. van Bon; Rolph Pfundt; Bert B.A. de Vries; Anders Wallin; David J. Amor; Paul A. James; Howard R. Slater; Jacqueline Schoumans

Background Chromosome 17p13.3 contains extensive repetitive sequences and is a recognised region of genomic instability. Haploinsufficiency of PAFAH1B1 (encoding LIS1) causes either isolated lissencephaly sequence or Miller–Dieker syndrome, depending on the size of the deletion. More recently, both microdeletions and microduplications mapping to the Miller–Dieker syndrome telomeric critical region have been identified and associated with distinct but overlapping phenotypes. Methods Genome-wide microarray screening was performed on 7678 patients referred with unexplained learning difficulties and/or autism, with or without other congenital abnormalities. Eight and five unrelated individuals, respectively, were identified with microdeletions and microduplications in 17p13.3. Results Comparisons with six previously reported microdeletion cases identified a 258 kb critical region, encompassing six genes including CRK (encoding Crk) and YWHAE (encoding 14-3-3ε). Clinical features included growth retardation, facial dysmorphism and developmental delay. Notably, one individual with only subtle facial features and an interstitial deletion involving CRK but not YWHAE suggested that a genomic region spanning 109 kb, encompassing two genes (TUSC5 and YWHAE), is responsible for the main facial dysmorphism phenotype. Only the microduplication phenotype included autism. The microduplication minimal region of overlap for the new and previously reported cases spans 72 kb encompassing a single gene, YWHAE. These genomic rearrangements were not associated with low-copy repeats and are probably due to diverse molecular mechanisms. Conclusions The authors further characterise the 17p13.3 microdeletion and microduplication phenotypic spectrum and describe a smaller critical genomic region allowing identification of candidate genes for the distinctive facial dysmorphism (microdeletions) and autism (microduplications) manifestations.


European Journal of Medical Genetics | 2010

22q11.2 microduplication in two patients with bladder exstrophy and hearing impairment

Johanna Lundin; Cilla Söderhäll; Lina Lundén; Anna Hammarsjö; Iréne White; Jacqueline Schoumans; Göran Läckgren; Christina Clementson Kockum; Agneta Nordenskjöld

Bladder exstrophy is a congenital malformation of the bladder and urethra. The genetic basis of this malformation is unknown however it is well known that chromosomal aberrations can lead to defects in organ development. A few bladder exstrophy patients have been described to carry chromosomal aberrations. Chromosomal rearrangements of 22q11.2 are implicated in several genomic disorders i.e. DiGeorge/velocardiofacial- and cat-eye syndrome. Deletions within this chromosomal region are relatively common while duplications of 22q11.2 are much less frequently observed. An increasing number of reports of microduplications of this region describe a highly variable phenotype. We have performed array-CGH analysis of 36 Swedish bladder exstrophy patients. The analysis revealed a similar and approximately 3 Mb duplication, consistent with the recently described 22q11.2 microduplication syndrome, in two unrelated cases with bladder exstrophy and hearing impairment. This finding was confirmed by multiplex ligation-dependent probe amplification (MLPA) and FISH analysis. Subsequent MLPA analysis of this chromosomal region in 33 bladder exstrophy patients did not reveal any deletion/duplication within this region. MLPA analysis of 171 anonymous control individuals revealed one individual carrying this microduplication. This is the first report of 22q11.2 microduplication associated with bladder exstrophy and hearing impairment. Furthermore the finding of one carrier among a cohort of normal controls further highlights the variable phenotype linked to this microduplication syndrome.


American Journal of Medical Genetics Part A | 2010

Chimerism Resulting From Parthenogenetic Activation and Dispermic Fertilization

Johanna Winberg; Peter Gustavsson; Kristina Lagerstedt-Robinson; Elisabeth Blennow; Johanna Lundin; Erik Iwarsson; Anna Nordenström; Britt-Marie Anderlid; Marie-Louise Bondeson; Agneta Nordenskjöld; Ann Nordgren

Whole‐body human chimerism is the result of two zygotes giving rise to one individual, and is a rarely detected condition. We have studied the molecular background and discuss the likely mechanism for the chimerism in a patient with a 46,XX/47,XY,+14 karyotype and ambiguous genitalia, cryptorchidism, pigment anomalies, and normal psychomotor development. We have used karyotyping, interphase‐FISH and array‐CGH analysis as well as molecular analysis of polymorphic markers from 48 loci in order to define the origin and percentage of 47,XY,+14 cells in different tissues. Based on the findings of two paternal alleles and the detection of homozygous maternal alleles without evidence of crossing‐over, and the fact that four alleles were never detected, our results indicate that the chimerism in our patient is the result of dispermic fertilization of a parthenogenetically activated oocyte. Our report underlines that cytogenetic findings suggesting mosaicism might actually indicate chimerism as an underlying mechanism in patients. It also highlights the difficulties in predicting the clinical outcome in patients with genetic aberrations in mosaic or chimeric form.


American Journal of Medical Genetics Part A | 2014

Small mosaic deletion encompassing the snoRNAs and SNURF-SNRPN results in an atypical Prader–Willi syndrome phenotype

Britt-Marie Anderlid; Johanna Lundin; Helena Malmgren; Mikael Lehtihet; Ann Nordgren

Genetic analyses were performed in a male patient with suspected Prader–Willi syndrome who presented with hypogonadism, excessive eating, central obesity, small hands and feet and cognition within the low normal range. However, he had no neonatal hypotonia or feeding problems during infancy. Chromosome analysis showed a normal male karyotype. Further analysis with array‐CGH identified a mosaic 847 kb deletion in 15q11‐q13, including SNURF‐SNRPN, the snoRNA gene clusters SNORD116 (HBII‐85), SNORD115, (HBII‐52), SNORD109 A and B (HBII‐438A and B), SNORD64 (HBII‐13), and NPAP1 (C15ORF2). MLPA confirmed the deletion and the results were compatible with a paternal origin. Metaphase‐FISH verified the mosaicism with the deletion present in 58% of leukocytes analyzed. Three smaller deletions in this region have previously been reported in patients with Prader–Willi syndrome phenotype. All three deletions included SNORD116, but only two encompassed parts of SNURF‐SNRPN, implicating SNORD116 as the major contributor to the Prader–Willi phenotype. Our case adds further information about genotype–phenotype correlation and supports the hypothesis that SNORD116 plays a major role in the pathogenesis of Prader‐Willi syndrome. Furthermore, it examplifies diagnostic difficulties in atypical cases and illustrates the need for additional testing methods when Prader‐Willi syndrome is suspected.


Human Molecular Genetics | 2015

WNT3 involvement in human bladder exstrophy and cloaca development in zebrafish

Izabella Baranowska Körberg; Wolfgang Hofmeister; Ellen Markljung; Jia Cao; Daniel Nilsson; Michael Ludwig; Markus Draaken; Gundela Holmdahl; Gillian Barker; Heiko Reutter; Vladana Vukojević; Christina Clementson Kockum; Johanna Lundin; Anna Lindstrand; Agneta Nordenskjöld

Bladder exstrophy, a severe congenital urological malformation when a child is born with an open urinary bladder, is the most common form of bladder exstrophy-epispadias complex (BEEC) with an incidence of 1:30,000 children of Caucasian descent. Recent studies suggest that WNT genes may contribute to the etiology of bladder exstrophy. Here, we evaluated WNT-pathway genes in 20 bladder exstrophy patients using massively parallel sequencing. In total 13 variants were identified in WNT3, WNT6, WNT7A, WNT8B, WNT10A, WNT11, WNT16, FZD5, LRP1 and LRP10 genes and predicted as potentially disease causing, of which seven variants were novel. One variant, identified in a patient with a de novo nonsynonymous substitution in WNT3 (p.Cys91Arg), was further evaluated in zebrafish. Knock down of wnt3 in zebrafish showed cloaca malformations, including disorganization of the cloaca epithelium and expansion of the cloaca lumen. Our study suggests that the function of the WNT3 p.Cys91Arg variant was altered, since RNA overexpression of mutant Wnt3 RNA does not result in embryonic lethality as seen with wild-type WNT3 mRNA. Finally, we also mutation screened the WNT3 gene further in 410 DNA samples from BEEC cases and identified one additional mutation c.638G>A (p.Gly213Asp), which was paternally inherited. In aggregate our data support the involvement of WNT-pathway genes in BEEC and suggest that WNT3 in itself is a rare cause of BEEC.


European Journal of Human Genetics | 2013

Molecular and clinical delineation of the 17q22 microdeletion phenotype

Tobias Laurell; Johanna Lundin; Britt Marie Anderlid; Jerome L. Gorski; Giedre Grigelioniene; Samantha J. L. Knight; Ana C.V. Krepischi; Agneta Nordenskjöld; Susan Price; Carla Rosenberg; Peter D. Turnpenny; Angela M. Vianna-Morgante; Ann Nordgren

Deletions involving 17q21–q24 have been identified previously to result in two clinically recognizable contiguous gene deletion syndromes: 17q21.31 and 17q23.1–q23.2 microdeletion syndromes. Although deletions involving 17q22 have been reported in the literature, only four of the eight patients reported were identified by array-comparative genomic hybridization (array-CGH) or flourescent in situ hybridization. Here, we describe five new patients with 1.8–2.5-Mb microdeletions involving 17q22 identified by array-CGH. We also present one patient with a large karyotypically visible deletion involving 17q22, fine-mapped to ∼8.2 Mb using array-CGH. We show that the commonly deleted region in our patients spans 0.24 Mb and two genes; NOG and C17ORF67. The function of C17ORF67 is not known, whereas Noggin, the product of NOG, is essential for correct joint development. In common with the 17q22 patients reported previously, the disease phenotype of our patients includes intellectual disability, attention deficit hyperactivity disorder, conductive hearing loss, visual impairment, low set ears, facial dysmorphology and limb anomalies. All patients displayed NOG-related bone and joint features, including symphalangism and facial dysmorphology. We conclude that these common clinical features indicate a novel clinically recognizable, 17q22 contiguous microdeletion syndrome.


American Journal of Medical Genetics Part A | 2012

Inherited mosaicism for the supernumerary marker chromosome in cat eye syndrome: inter- and intra-individual variation and correlation to the phenotype.

Malin Kvarnung; Anna Lindstrand; Helena Malmgren; Anders Thåström; Lena Jacobson; Niklas Dahl; Johanna Lundin; Elisabeth Blennow

We have studied a family with repeated transmission of mosaicism for a supernumerary marker chromosome (SMC), giving rise to varying symptoms of the cat eye syndrome (CES) in the offspring. The frequency of the SMC was investigated using FISH with probes from the CES critical region on lymphocytes as well as buccal cells. The same probes were used to study the frequency of the SMC in spermatozoa from the father. The SMC was characterized in detail using array‐CGH and was found to correspond to a symmetrical cat eye SMC type I, with two extra copies of the most proximal part of 22q11, not extending into the classical 22q11.2 deletion region. Mosaicism for the SMC was detected in 4 out of 7 family members, the father and all his three children. The degree of mosaicism varied greatly between individuals as well as between tissues, with twice as many cells with the SMC in epithelial cells compared to blood. The highest frequency (almost 50%) was found in spermatozoa from the father. There was a direct correlation between the degree of mosaicism and the symptoms, varying from no obvious symptoms to classical CES. The study confirms the occurrence of direct transmission of SMC‐mosaicism in CES. The results indicate that examination of parental epithelial cells should be preferred compared to blood cells in order to exclude a recurrence risk in parents of a child with CES. Interphase FISH analysis of spermatozoa is the most sensitive method to exclude paternal germ line mosaicsm.


European Journal of Human Genetics | 2017

Haploinsufficiency of ZNF462 is associated with craniofacial anomalies, corpus callosum dysgenesis, ptosis, and developmental delay

Karin Weiss; Kristen Wigby; Madeleine Fannemel; Lindsay B. Henderson; Natalie Beck; Neeti Ghali; Ddd Study; Britt Marie Anderlid; Johanna Lundin; Ada Hamosh; Marilyn C. Jones; Sondhya Ghedia; Maximilian Muenke; Paul Kruszka

The introduction of whole-exome sequencing into the Pediatric Genetics clinic has increased the identification of novel genes associated with neurodevelopmental disorders and congenital anomalies. This agnostic approach has shed light on multiple proteins and pathways not previously known to be associated with disease. Here we report eight subjects from six families with predicted loss of function variants in ZNF462, a zinc-finger protein of unknown function. These individuals have overlapping phenotypes that include ptosis, metopic ridging, craniosynostosis, dysgenesis of the corpus callosum, and developmental delay. We propose that ZNF462 plays an important role in embryonic development, and is associated with craniofacial and neurodevelopmental abnormalities.


Human genome variation | 2018

Evaluation of the ISL1 gene in the pathogenesis of bladder exstrophy in a Swedish cohort

Samara Arkani; Jia Cao; Johanna Lundin; Daniel Nilsson; Thomas Källman; Gillian Barker; Gundela Holmdahl; Christina Clementsson Kockum; Hans Matsson; Agneta Nordenskjöld

Bladder exstrophy is a congenital closure defect of the urinary bladder with a profound effect on morbidity. Although the malformation is usually sporadic, a genetic background is supported by an increased recurrence risk in relatives, higher concordance rates in monozygotic twins and several associated chromosomal aberrations. Recently, the ISL1 gene was presented as a candidate gene for bladder exstrophy and epispadias complex (BEEC) development in two different studies. In our study, we screened for genetic variants in the ISL1 gene in DNA from 125 Swedish patients using Sanger sequencing and array-CGH analysis. In addition, we evaluated ISL1 expression in RNA of human bladder during embryonic and fetal weeks 5–10 relative to that in lung tissue (week 9). In total, 21 single-nucleotide variants were identified, including a potentially novel missense variant, c.137C>G p.(Ala46Gly), substituting a conserved amino acid. This variant was inherited from an unaffected mother. No structural variants were identified. RNA sequencing revealed ISL1 mRNA expression during the critical time frame of human bladder development. In conclusion, we did not detect any known or likely pathogenic variants in the ISL1 gene in 125 Swedish BEEC patients, indicating that variation in the ISL1 gene is not a common genetic mechanism of BEEC development in the Swedish population.

Collaboration


Dive into the Johanna Lundin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Britt-Marie Anderlid

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar

Cilla Söderhäll

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Göran Läckgren

Boston Children's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge