Johanna Rhodes
Imperial College London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Johanna Rhodes.
Mbio | 2015
Alireza Abdolrasouli; Johanna Rhodes; Mathew A. Beale; Ferry Hagen; Thomas R. Rogers; Anuradha Chowdhary; Jacques F. Meis; Darius Armstrong-James; Matthew C. Fisher
ABSTRACT A rapid and global emergence of azole resistance has been observed in the pathogenic fungus Aspergillus fumigatus over the past decade. The dominant resistance mechanism appears to be of environmental origin and involves mutations in the cyp51A gene, which encodes a protein targeted by triazole antifungal drugs. Whole-genome sequencing (WGS) was performed for high-resolution single-nucleotide polymorphism (SNP) analysis of 24 A. fumigatus isolates, including azole-resistant and susceptible clinical and environmental strains obtained from India, the Netherlands, and the United Kingdom, in order to assess the utility of WGS for characterizing the alleles causing resistance. WGS analysis confirmed that TR34/L98H (a mutation comprising a tandem repeat [TR] of 34 bases in the promoter of the cyp51A gene and a leucine-to-histidine change at codon 98) is the sole mechanism of azole resistance among the isolates tested in this panel of isolates. We used population genomic analysis and showed that A. fumigatus was panmictic, with as much genetic diversity found within a country as is found between continents. A striking exception to this was shown in India, where isolates are highly related despite being isolated from both clinical and environmental sources across >1,000 km; this broad occurrence suggests a recent selective sweep of a highly fit genotype that is associated with the TR34/L98H allele. We found that these sequenced isolates are all recombining, showing that azole-resistant alleles are segregating into diverse genetic backgrounds. Our analysis delineates the fundamental population genetic parameters that are needed to enable the use of genome-wide association studies to identify the contribution of SNP diversity to the generation and spread of azole resistance in this medically important fungus. IMPORTANCE Resistance to azoles in the ubiquitous ascomycete fungus A. fumigatus was first reported from clinical isolates collected in the United States during the late 1980s. Over the last decade, an increasing number of A. fumigatus isolates from the clinic and from nature have been found to show resistance to azoles, suggesting that resistance is emerging through selection by the widespread usage of agricultural azole antifungal compounds. Aspergillosis is an emerging clinical problem, with high rates of treatment failures necessitating the development of new techniques for surveillance and for determining the genome-wide basis of azole resistance in A. fumigatus. Resistance to azoles in the ubiquitous ascomycete fungus A. fumigatus was first reported from clinical isolates collected in the United States during the late 1980s. Over the last decade, an increasing number of A. fumigatus isolates from the clinic and from nature have been found to show resistance to azoles, suggesting that resistance is emerging through selection by the widespread usage of agricultural azole antifungal compounds. Aspergillosis is an emerging clinical problem, with high rates of treatment failures necessitating the development of new techniques for surveillance and for determining the genome-wide basis of azole resistance in A. fumigatus.
Philosophical Transactions of the Royal Society B | 2016
Jacques F. Meis; Anuradha Chowdhary; Johanna Rhodes; Matthew C. Fisher; Paul E. Verweij
Aspergillus fungi are the cause of an array of diseases affecting humans, animals and plants. The triazole antifungal agents itraconazole, voriconazole, isavuconazole and posaconazole are treatment options against diseases caused by Aspergillus. However, resistance to azoles has recently emerged as a new therapeutic challenge in six continents. Although de novo azole resistance occurs occasionally in patients during azole therapy, the main burden is the aquisition of resistance through the environment. In this setting, the evolution of resistance is attributed to the widespread use of azole-based fungicides. Although ubiquitously distributed, A. fumigatus is not a phytopathogen. However, agricultural fungicides deployed against plant pathogenic moulds such as Fusarium, Mycospaerella and A. flavus also show activity against A. fumigatus in the environment and exposure of non-target fungi is inevitable. Further, similarity in molecule structure between azole fungicides and antifungal drugs results in cross-resistance of A. fumigatus to medical azoles. Clinical studies have shown that two-thirds of patients with azole-resistant infections had no previous history of azole therapy and high mortality rates between 50% and 100% are reported in azole-resistant invasive aspergillosis. The resistance phenotype is associated with key mutations in the cyp51A gene, including TR34/L98H, TR53 and TR46/Y121F/T289A resistance mechanisms. Early detection of resistance is of paramount importance and if demonstrated, either with susceptibility testing or through molecular analysis, azole monotherapy should be avoided. Liposomal amphotericin B or a combination of voriconazole and an echinocandin are recomended for azole-resistant aspergillosis. This article is part of the themed issue ‘Tackling emerging fungal threats to animal health, food security and ecosystem resilience’.
G3: Genes, Genomes, Genetics | 2017
Johanna Rhodes; Mathew A. Beale; Mathieu Vanhove; Joseph N. Jarvis; Shichina Kannambath; John Simpson; Anthea Ryan; Graeme Meintjes; Thomas S. Harrison; Matthew C. Fisher; Tihana Bicanic
Recurrence of meningitis due to Cryptococcus neoformans after treatment causes substantial mortality in HIV/AIDS patients across sub-Saharan Africa. In order to determine whether recurrence occurred due to relapse of the original infecting isolate or reinfection with a different isolate weeks or months after initial treatment, we used whole-genome sequencing (WGS) to assess the genetic basis of infection in 17 HIV-infected individuals with recurrent cryptococcal meningitis (CM). Comparisons revealed a clonal relationship for 15 pairs of isolates recovered before and after recurrence showing relapse of the original infection. The two remaining pairs showed high levels of genetic heterogeneity; in one pair we found this to be a result of infection by mixed genotypes, while the second was a result of nonsense mutations in the gene encoding the DNA mismatch repair proteins MSH2, MSH5, and RAD5. These nonsense mutations led to a hypermutator state, leading to dramatically elevated rates of synonymous and nonsynonymous substitutions. Hypermutator phenotypes owing to nonsense mutations in these genes have not previously been reported in C. neoformans, and represent a novel pathway for rapid within-host adaptation and evolution of resistance to first-line antifungal drugs.
PLOS ONE | 2014
Johanna Rhodes; Mathew A. Beale; Matthew C. Fisher
The industry of next-generation sequencing is constantly evolving, with novel library preparation methods and new sequencing machines being released by the major sequencing technology companies annually. The Illumina TruSeq v2 library preparation method was the most widely used kit and the market leader; however, it has now been discontinued, and in 2013 was replaced by the TruSeq Nano and TruSeq PCR-free methods, leaving a gap in knowledge regarding which is the most appropriate library preparation method to use. Here, we used isolates from the pathogenic fungi Cryptococcus neoformans var. grubii and sequenced them using the existing TruSeq DNA v2 kit (Illumina), along with two new kits: the TruSeq Nano DNA kit (Illumina) and the NEBNext Ultra DNA kit (New England Biolabs) to provide a comparison. Compared to the original TruSeq DNA v2 kit, both newer kits gave equivalent or better sequencing data, with increased coverage. When comparing the two newer kits, we found little difference in cost and workflow, with the NEBNext Ultra both slightly cheaper and faster than the TruSeq Nano. However, the quality of data generated using the TruSeq Nano DNA kit was superior due to higher coverage at regions of low GC content, and more SNPs identified. Researchers should therefore evaluate their resources and the type of application (and hence data quality) being considered when ultimately deciding on which library prep method to use.
Molecular Ecology | 2017
Mathieu Vanhove; Mathew A. Beale; Johanna Rhodes; Duncan Chanda; Shabir Lakhi; Geoffrey Kwenda; Síle F. Molloy; Natasha Karunaharan; Neil R.H. Stone; Thomas S. Harrison; Tihana Bicanic; Matthew C. Fisher
Emerging infections caused by fungi have become a widely recognized global phenomenon and are causing an increasing burden of disease. Genomic techniques are providing new insights into the structure of fungal populations, revealing hitherto undescribed fine‐scale adaptations to environments and hosts that govern their emergence as infections. Cryptococcal meningitis is a neglected tropical disease that is responsible for a large proportion of AIDS‐related deaths across Africa; however, the ecological determinants that underlie a patients risk of infection remain largely unexplored. Here, we use genome sequencing and ecological genomics to decipher the evolutionary ecology of the aetiological agents of cryptococcal meningitis, Cryptococcus neoformans and Cryptococcus gattii, across the central African country of Zambia. We show that the occurrence of these two pathogens is differentially associated with biotic (macroecological) and abiotic (physical) factors across two key African ecoregions, Central Miombo woodlands and Zambezi Mopane woodlands. We show that speciation of Cryptococcus has resulted in adaptation to occupy different ecological niches, with C. neoformans found to occupy Zambezi Mopane woodlands and C. gattii primarily recovered from Central Miombo woodlands. Genome sequencing shows that C. neoformans causes 95% of human infections in this region, of which over three‐quarters belonged to the globalized lineage VNI. We show that VNI infections are largely associated with urbanized populations in Zambia. Conversely, the majority of C. neoformans isolates recovered in the environment belong to the genetically diverse African‐endemic lineage VNB, and we show hitherto unmapped levels of genomic diversity within this lineage. Our results reveal the complex evolutionary ecology that underpins the reservoirs of infection for this, and likely other, deadly pathogenic fungi.
Genetics | 2017
Johanna Rhodes; Christopher A. Desjardins; Sean Sykes; Mathew A. Beale; Mathieu Vanhove; Sharadha Sakthikumar; Yuan Chen; Sharvari Gujja; Sakina Saif; Anuradha Chowdhary; Daniel John Lawson; Vinicius Ponzio; Arnaldo Lopes Colombo; Wieland Meyer; David M. Engelthaler; Ferry Hagen; Maria Teresa Illnait-Zaragozi; Alexandre Alanio; Jo-Marie Vreulink; Joseph Heitman; John R. Perfect; Anastasia P. Litvintseva; Tihana Bicanic; Thomas S. Harrison; Matthew C. Fisher; Christina A. Cuomo
Cryptococcus neoformans var. grubii is the causative agent of cryptococcal meningitis, a significant source of mortality in immunocompromised individuals, typically human immunodeficiency virus/AIDS patients from developing countries. Despite the worldwide emergence of this ubiquitous infection, little is known about the global molecular epidemiology of this fungal pathogen. Here we sequence the genomes of 188 diverse isolates and characterize the major subdivisions, their relative diversity, and the level of genetic exchange between them. While most isolates of C. neoformans var. grubii belong to one of three major lineages (VNI, VNII, and VNB), some haploid isolates show hybrid ancestry including some that appear to have recently interbred, based on the detection of large blocks of each ancestry across each chromosome. Many isolates display evidence of aneuploidy, which was detected for all chromosomes. In diploid isolates of C. neoformans var. grubii (serotype AA) and of hybrids with C. neoformans var. neoformans (serotype AD) such aneuploidies have resulted in loss of heterozygosity, where a chromosomal region is represented by the genotype of only one parental isolate. Phylogenetic and population genomic analyses of isolates from Brazil reveal that the previously “African” VNB lineage occurs naturally in the South American environment. This suggests migration of the VNB lineage between Africa and South America prior to its diversification, supported by finding ancestral recombination events between isolates from different lineages and regions. The results provide evidence of substantial population structure, with all lineages showing multi-continental distributions; demonstrating the highly dispersive nature of this pathogen.
Emerging microbes & infections | 2018
Johanna Rhodes; Alireza Abdolrasouli; Rhys A. Farrer; Christina A. Cuomo; David M. Aanensen; Darius Armstrong-James; Matthew C. Fisher; Silke Schelenz
Candida auris was first described in 2009, and it has since caused nosocomial outbreaks, invasive infections, and fungaemia across at least 19 countries on five continents. An outbreak of C. auris occurred in a specialized cardiothoracic London hospital between April 2015 and November 2016, which to date has been the largest outbreak in the UK, involving a total of 72 patients. To understand the genetic epidemiology of C. auris infection both within this hospital and within a global context, we sequenced the outbreak isolate genomes using Oxford Nanopore Technologies and Illumina platforms to detect antifungal resistance alleles and reannotate the C. auris genome. Phylogenomic analysis placed the UK outbreak in the India/Pakistan clade, demonstrating an Asian origin; the outbreak showed similar genetic diversity to that of the entire clade, and limited local spatiotemporal clustering was observed. One isolate displayed resistance to both echinocandins and 5-flucytosine; the former was associated with a serine to tyrosine amino acid substitution in the gene FKS1, and the latter was associated with a phenylalanine to isoleucine substitution in the gene FUR1. These mutations add to a growing body of research on multiple antifungal drug targets in this organism. Multiple differential episodic selection of antifungal resistant genotypes has occurred within a genetically heterogenous population across this outbreak, creating a resilient pathogen and making it difficult to define local-scale patterns of transmission and implement outbreak control measures.
bioRxiv | 2017
Johanna Rhodes; Alireza Abdolrasouli; Rhys A. Farrer; Christina A. Cuomo; David M. Aanensen; Darius Armstrong-James; Matthew C. Fisher; Silke Schelenz
Background Candida auris was first described in 2009, and has since caused nosocomial outbreaks, invasive infections and fungaemia across 11 countries in five continents. An outbreak of C. auris occurred in a specialised cardiothoracic London hospital between April 2015 and November 2016, which to date has been the largest outbreak reported worldwide, involving a total of 72 patients. Methods To understand the epidemiology of C. auris infection within this hospital, we sequenced the genomes of outbreak isolates using Oxford Nanopore Technologies and Illumina in order to type antifungal resistance alleles and to explore the outbreak within its local and global context. Findings Phylogenomic analysis placed the UK outbreak in the India/Pakistan clade, demonstrating an Asian origin. The outbreak showed similar diversity to that of the entire clade and limited local spatiotemporal clustering was observed. One isolate displayed resistance to both echinocandins and 5-flucytosine; the former was associated with a serine to tyrosine amino acid substitution in the gene FKS1, and the latter was associated with a phenylalanine to isoleucine substitution in the gene FUR1. These mutations are novel for this pathogen. Interpretation Multiple differential episodic selection of antifungal resistant genotypes has occurred within a genetically heterogenous population across this outbreak, creating a resilient pathogen and making it difficult to define local-scale patterns of transmission as well as implementing outbreak control measures. Funding Antimicrobial Research Collaborative, Imperial College London
Genetics | 2017
Johanna Rhodes; Christopher A. Desjardins; Daniel John Lawson; Sean Sykes; Mathew A. Beale
Cryptococcus neoformans var. grubii is the causative agent of cryptococcal meningitis, a significant source of mortality in immunocompromised individuals, typically HIV/AIDS patients from developing countries. Despite the worldwide emergence of this ubiquitous infection, little is known about the global molecular epidemiology of this fungal pathogen. Here we sequence the genomes of 188 diverse isolates and characterized the major subdivisions, their relative diversity and the level of genetic exchange between them. While most isolates of C. neoformans var. grubii belong to one of three major lineages (VNI, VNII, and VNB), some haploid isolates show hybrid ancestry including some that appear to have recently interbred, based on the detection of large blocks of each ancestry across each chromosome. Many isolates display evidence of aneuploidy, which was detected for all chromosomes. In diploid isolates of C. neoformans var. grubii (serotype A/A) and of hybrids with C. neoformans var. neoformans (serotype A/D) such aneuploidies have resulted in loss of heterozygosity, where a chromosomal region is represented by the genotype of only one parental isolate. Phylogenetic and population genomic analyses of isolates from Brazil revealed that the previously ‘African’ VNB lineage occurs naturally in the South American environment. This suggests migration of the VNB lineage between Africa and South America prior to its diversification, supported by finding ancestral recombination events between isolates from different lineages and regions. The results provide evidence of substantial population structure, with all lineages showing multi-continental distributions demonstrating the highly dispersive nature of this pathogen. Author Summary Cryptococcus neoformans var. grubii is a human fungal pathogen of immunocompromised individuals that has global clinical impact, causing half a million deaths per year. Substantial genetic substructure exists for this pathogen, with two lineages found globally (VNI, VNII) whereas a third has appeared confined to sub-Saharan Africa (VNB). Here, we utilized genome sequencing of a large set of global isolates to examine the genetic diversity, hybridization, and biogeography of these lineages. We found that while the three major lineages are well separated, recombination between the lineages has occurred, notably resulting in hybrid isolates with segmented ancestry across the genome. In addition, we showed that isolates from South America are placed within the VNB lineage, formerly thought to be confined to Africa, and that there is phylogenetic separation between these geographies that substantially expands the diversity of these lineages. Our findings provide a new framework for further studies of the dynamics of natural populations of C. neoformans var. grubii.
Mycoses | 2018
Alireza Abdolrasouli; Amelia Bercusson; Johanna Rhodes; Ferry Hagen; Jochem B. Buil; Alison Y. Y. Tang; Leonard L. de Boer; Anand Shah; Andrew J. Milburn; J. Stuart Elborn; Andrew L. Jones; Jacques F. Meis; Matthew C. Fisher; Silke Schelenz; N.J. Simmonds; Darius Armstrong-James
Infections caused by Rasamsonia argillacea complex have been reported in various clinical settings. Cystic fibrosis (CF) is one of the main underlying conditions. An observational cohort study of CF patients with Rasamsonia in respiratory samples was conducted. Eight isolates from 6 patients were identified as R. argillacea complex and tested for antifungal susceptibility. All isolates had high MICs to voriconazole and posaconazole and low MECs to echinocandins. Four patients experienced lung function decline in the year preceding first Rasamsonia isolation. This continued in the year following first isolation in 3 out of 4 cases. Antifungal therapy was initiated in 2 patients, to which only one exhibited a clinical response. Three out of 6 patients died within 3 years of isolating Rasamsonia. Genotyping suggests that similar genotypes of Rasamsonia can persist in CF airways. Consistent with other fungi in CF, the clinical impact of airway colonisation by Rasamsonia is variable. In certain patients, Rasamsonia may be able to drive clinical decline. In others, though a clear impact on lung function may be difficult to determine, the appearance of Rasamsonia acts as a marker of disease severity. In others it does not appear to have an obvious clinical impact on disease progression.