Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rhys A. Farrer is active.

Publication


Featured researches published by Rhys A. Farrer.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Multiple emergences of genetically diverse amphibian-infecting chytrids include a globalized hypervirulent recombinant lineage

Rhys A. Farrer; Lucy A. Weinert; Jon Bielby; Trenton W. J. Garner; Francois Balloux; Frances C. Clare; Jaime Bosch; Andrew A. Cunningham; Ché Weldon; L. H. du Preez; L. Anderson; S. L. K. Pond; R. Shahar-Golan; Daniel A. Henk; Matthew C. Fisher

Batrachochytrium dendrobatidis (Bd) is a globally ubiquitous fungal infection that has emerged to become a primary driver of amphibian biodiversity loss. Despite widespread effort to understand the emergence of this panzootic, the origins of the infection, its patterns of global spread, and principle mode of evolution remain largely unknown. Using comparative population genomics, we discovered three deeply diverged lineages of Bd associated with amphibians. Two of these lineages were found in multiple continents and are associated with known introductions by the amphibian trade. We found that isolates belonging to one clade, the global panzootic lineage (BdGPL) have emerged across at least five continents during the 20th century and are associated with the onset of epizootics in North America, Central America, the Caribbean, Australia, and Europe. The two newly identified divergent lineages, Cape lineage (BdCAPE) and Swiss lineage (BdCH), were found to differ in morphological traits when compared against one another and BdGPL, and we show that BdGPL is hypervirulent. BdGPL uniquely bears the hallmarks of genomic recombination, manifested as extensive intergenomic phylogenetic conflict and patchily distributed heterozygosity. We postulate that contact between previously genetically isolated allopatric populations of Bd may have allowed recombination to occur, resulting in the generation, spread, and invasion of the hypervirulent BdGPL leading to contemporary disease-driven losses in amphibian biodiversity.


Science | 2010

Genome Evolution Following Host Jumps in the Irish Potato Famine Pathogen Lineage

Sylvain Raffaele; Rhys A. Farrer; Liliana M. Cano; David J. Studholme; Daniel MacLean; Marco Thines; Rays H. Y. Jiang; Michael C. Zody; Sridhara G. Kunjeti; Nicole M. Donofrio; Blake C. Meyers; Chad Nusbaum; Sophien Kamoun

From Blight to Powdery Mildew Pathogenic effects of microbes on plants have widespread consequences. Witness, for example, the cultural upheavals driven by potato blight in the 1800s. A variety of microbial pathogens continue to afflict crop plants today, driving both loss of yield and incurring the increased costs of control mechanisms. Now, four reports analyze microbial genomes in order to understand better how plant pathogens function (see the Perspective by Dodds). Raffaele et al. (p. 1540) describe how the genome of the potato blight pathogen accommodates transfer to different hosts. Spanu et al. (p. 1543) analyze what it takes to be an obligate biotroph in barley powdery mildew, and Baxter et al. (p. 1549) ask a similar question for a natural pathogen of Arabidopsis. Schirawski et al. (p. 1546) compared genomes of maize pathogens to identify virulence determinants. Better knowledge of what in a genome makes a pathogen efficient and deadly is likely to be useful for improving agricultural crop management and breeding. A group of papers analyzes pathogen genomes to find the roots of virulence, opportunism, and life-style determinants. Many plant pathogens, including those in the lineage of the Irish potato famine organism Phytophthora infestans, evolve by host jumps followed by specialization. However, how host jumps affect genome evolution remains largely unknown. To determine the patterns of sequence variation in the P. infestans lineage, we resequenced six genomes of four sister species. This revealed uneven evolutionary rates across genomes with genes in repeat-rich regions showing higher rates of structural polymorphisms and positive selection. These loci are enriched in genes induced in planta, implicating host adaptation in genome evolution. Unexpectedly, genes involved in epigenetic processes formed another class of rapidly evolving residents of the gene-sparse regions. These results demonstrate that dynamic repeat-rich genome compartments underpin accelerated gene evolution following host jumps in this pathogen lineage.


PLOS Pathogens | 2012

Genome analyses of an aggressive and invasive lineage of the Irish potato famine pathogen.

D. E. L. Cooke; Liliana M. Cano; Sylvain Raffaele; Ruairidh A. Bain; Louise R. Cooke; Graham J. Etherington; Kenneth L. Deahl; Rhys A. Farrer; Eleanor M. Gilroy; Erica M. Goss; Niklaus J. Grünwald; Ingo Hein; Daniel MacLean; James W. McNicol; Eva Randall; Ricardo Oliva; Mathieu A. Pel; D. S. Shaw; Julie Squires; Moray Taylor; Vivianne G. A. A. Vleeshouwers; Paul R. J. Birch; A. K. Lees; Sophien Kamoun

Pest and pathogen losses jeopardise global food security and ever since the 19th century Irish famine, potato late blight has exemplified this threat. The causal oomycete pathogen, Phytophthora infestans, undergoes major population shifts in agricultural systems via the successive emergence and migration of asexual lineages. The phenotypic and genotypic bases of these selective sweeps are largely unknown but management strategies need to adapt to reflect the changing pathogen population. Here, we used molecular markers to document the emergence of a lineage, termed 13_A2, in the European P. infestans population, and its rapid displacement of other lineages to exceed 75% of the pathogen population across Great Britain in less than three years. We show that isolates of the 13_A2 lineage are among the most aggressive on cultivated potatoes, outcompete other aggressive lineages in the field, and overcome previously effective forms of plant host resistance. Genome analyses of a 13_A2 isolate revealed extensive genetic and expression polymorphisms particularly in effector genes. Copy number variations, gene gains and losses, amino-acid replacements and changes in expression patterns of disease effector genes within the 13_A2 isolate likely contribute to enhanced virulence and aggressiveness to drive this population displacement. Importantly, 13_A2 isolates carry intact and in planta induced Avrblb1, Avrblb2 and Avrvnt1 effector genes that trigger resistance in potato lines carrying the corresponding R immune receptor genes Rpi-blb1, Rpi-blb2, and Rpi-vnt1.1. These findings point towards a strategy for deploying genetic resistance to mitigate the impact of the 13_A2 lineage and illustrate how pathogen population monitoring, combined with genome analysis, informs the management of devastating disease epidemics.


Science | 2014

Recent introduction of a chytrid fungus endangers Western Palearctic salamanders

An Martel; Mark Blooi; Connie Adriaensen; P. Van Rooij; Wouter Beukema; Matthew C. Fisher; Rhys A. Farrer; Benedikt R. Schmidt; Ursina Tobler; K. Goka; Karen R. Lips; Carly R. Muletz; Kelly R. Zamudio; Jaime Bosch; Stefan Lötters; Emma Wombwell; Trenton W. J. Garner; Andrew A. Cunningham; A. Spitzen-van der Sluijs; Sebastiano Salvidio; Richard Ducatelle; Kouki Nishikawa; T. T. Nguyen; Jonathan E. Kolby; I. Van Bocxlaer; Franky Bossuyt; Frank Pasmans

A new, yet old, threat to amphibians Globally, populations of amphibians have been severely affected by a disease caused by the fungus Batrachochytrium dendrobatidis. Recently, some European salamander populations were decimated by the emergence of a new, related chytrid fungus, B. salamandrivorans. Martel et al. screened amphibians across continents. This newly emerging threat seems to have originated in Asia and traveled to Europe with salamanders transported as part of the pet trade. Asian salamanders have evolved resistance to the pathogen, but salamanders from other parts of the world are highly susceptible. Science, this issue p. 630 A new fungal disease from Asia threatens salamanders in Europe, the Middle East, and North Africa. Emerging infectious diseases are reducing biodiversity on a global scale. Recently, the emergence of the chytrid fungus Batrachochytrium salamandrivorans resulted in rapid declines in populations of European fire salamanders. Here, we screened more than 5000 amphibians from across four continents and combined experimental assessment of pathogenicity with phylogenetic methods to estimate the threat that this infection poses to amphibian diversity. Results show that B. salamandrivorans is restricted to, but highly pathogenic for, salamanders and newts (Urodela). The pathogen likely originated and remained in coexistence with a clade of salamander hosts for millions of years in Asia. As a result of globalization and lack of biosecurity, it has recently been introduced into naïve European amphibian populations, where it is currently causing biodiversity loss.


Molecular Plant Pathology | 2009

Ten things to know about oomycete effectors.

Sebastian Schornack; Edgar Huitema; Liliana M. Cano; Tolga O. Bozkurt; Ricardo Oliva; Mireille van Damme; Simon Schwizer; Sylvain Raffaele; Angela Chaparro-Garcia; Rhys A. Farrer; María Eugenia Segretin; Jorunn I. B. Bos; Brian J. Haas; Michael C. Zody; Chad Nusbaum; Joe Win; Marco Thines; Sophien Kamoun

Long considered intractable organisms by fungal genetic research standards, the oomycetes have recently moved to the centre stage of research on plant-microbe interactions. Recent work on oomycete effector evolution, trafficking and function has led to major conceptual advances in the science of plant pathology. In this review, we provide a historical perspective on oomycete genetic research and summarize the state of the art in effector biology of plant pathogenic oomycetes by describing what we consider to be the 10 most important concepts about oomycete effectors.


Fems Microbiology Letters | 2009

De novo assembly of the Pseudomonas syringae pv. syringae B728a genome using Illumina/Solexa short sequence reads

Rhys A. Farrer; Eric Kemen; Jonathan D. G. Jones; David J. Studholme

Illuminas Genome Analyzer generates ultra-short sequence reads, typically 36 nucleotides in length, and is primarily intended for resequencing. We tested the potential of this technology for de novo sequence assembly on the 6 Mbp genome of Pseudomonas syringae pv. syringae B728a with several freely available assembly software packages. Using an unpaired data set, velvet assembled >96% of the genome into contigs with an N50 length of 8289 nucleotides and an error rate of 0.33%. EDENA generated smaller contigs (N50 was 4192 nucleotides) and comparable error rates. SSAKE and VCAKE yielded shorter contigs with very high error rates. Assembly of paired-end sequence data carrying 400 bp inserts produced longer contigs (N50 up to 15 628 nucleotides), but with increased error rates (0.5%). Contig length and error rate were very sensitive to the choice of parameter values. Noncoding RNA genes were poorly resolved in de novo assemblies, while >90% of the protein-coding genes were assembled with 100% accuracy over their full length. This study demonstrates that, in practice, de novo assembly of 36-nucleotide reads can generate reasonably accurate assemblies from about 40 x deep sequence data sets. These draft assemblies are useful for exploring an organisms proteomic potential, at a very economic low cost.


PLOS Genetics | 2013

Chromosomal Copy Number Variation, Selection and Uneven Rates of Recombination Reveal Cryptic Genome Diversity Linked to Pathogenicity

Rhys A. Farrer; Daniel A. Henk; Trenton W. J. Garner; Francois Balloux; Douglas C. Woodhams; Matthew C. Fisher

Pathogenic fungi constitute a growing threat to both plant and animal species on a global scale. Despite a clonal mode of reproduction dominating the population genetic structure of many fungi, putatively asexual species are known to adapt rapidly when confronted by efforts to control their growth and transmission. However, the mechanisms by which adaptive diversity is generated across a clonal background are often poorly understood. We sequenced a global panel of the emergent amphibian pathogen, Batrachochytrium dendrobatidis (Bd), to high depth and characterized rapidly changing features of its genome that we believe hold the key to the worldwide success of this organism. Our analyses show three processes that contribute to the generation of de novo diversity. Firstly, we show that the majority of wild isolates manifest chromosomal copy number variation that changes over short timescales. Secondly, we show that cryptic recombination occurs within all lineages of Bd, leading to large regions of the genome being in linkage equilibrium, and is preferentially associated with classes of genes of known importance for virulence in other pathosystems. Finally, we show that these classes of genes are under directional selection, and that this has predominantly targeted the Global Panzootic Lineage (BdGPL). Our analyses show that Bd manifests an unusually dynamic genome that may have been shaped by its association with the amphibian host. The rates of variation that we document likely explain the high levels of phenotypic variability that have been reported for Bd, and suggests that the dynamic genome of this pathogen has contributed to its success across multiple biomes and host-species.


Mbio | 2015

Genome Evolution and Innovation across the Four Major Lineages of Cryptococcus gattii

Rhys A. Farrer; Christopher A. Desjardins; Sharadha Sakthikumar; Sharvari Gujja; Sakina Saif; Qiandong Zeng; Yuan Chen; Kerstin Voelz; Joseph Heitman; Robin C. May; Matthew C. Fisher; Christina A. Cuomo

ABSTRACT Cryptococcus gattii is a fungal pathogen of humans, causing pulmonary infections in otherwise healthy hosts. To characterize genomic variation among the four major lineages of C. gattii (VGI, -II, -III, and -IV), we generated, annotated, and compared 16 de novo genome assemblies, including the first for the rarely isolated lineages VGIII and VGIV. By identifying syntenic regions across assemblies, we found 15 structural rearrangements, which were almost exclusive to the VGI-III-IV lineages. Using synteny to inform orthology prediction, we identified a core set of 87% of C. gattii genes present as single copies in all four lineages. Remarkably, 737 genes are variably inherited across lineages and are overrepresented for response to oxidative stress, mitochondrial import, and metal binding and transport. Specifically, VGI has an expanded set of iron-binding genes thought to be important to the virulence of Cryptococcus, while VGII has expansions in the stress-related heat shock proteins relative to the other lineages. We also characterized genes uniquely absent in each lineage, including a copper transporter absent from VGIV, which influences Cryptococcus survival during pulmonary infection and the onset of meningoencephalitis. Through inclusion of population-level data for an additional 37 isolates, we identified a new transcontinental clonal group that we name VGIIx, mitochondrial recombination between VGII and VGIII, and positive selection of multidrug transporters and the iron-sulfur protein aconitase along multiple branches of the phylogenetic tree. Our results suggest that gene expansion or contraction and positive selection have introduced substantial variation with links to mechanisms of pathogenicity across this species complex. IMPORTANCE The genetic differences between phenotypically different pathogens provide clues to the underlying mechanisms of those traits and can lead to new drug targets and improved treatments for those diseases. In this paper, we compare 16 genomes belonging to four highly differentiated lineages of Cryptococcus gattii, which cause pulmonary infections in otherwise healthy humans and other animals. Half of these lineages have not had their genomes previously assembled and annotated. We identified 15 ancestral rearrangements in the genome and over 700 genes that are unique to one or more lineages, many of which are associated with virulence. In addition, we found evidence for recent transcontinental spread, mitochondrial genetic exchange, and positive selection in multidrug transporters. Our results suggest that gene expansion/contraction and positive selection are diversifying the mechanisms of pathogenicity across this species complex. The genetic differences between phenotypically different pathogens provide clues to the underlying mechanisms of those traits and can lead to new drug targets and improved treatments for those diseases. In this paper, we compare 16 genomes belonging to four highly differentiated lineages of Cryptococcus gattii, which cause pulmonary infections in otherwise healthy humans and other animals. Half of these lineages have not had their genomes previously assembled and annotated. We identified 15 ancestral rearrangements in the genome and over 700 genes that are unique to one or more lineages, many of which are associated with virulence. In addition, we found evidence for recent transcontinental spread, mitochondrial genetic exchange, and positive selection in multidrug transporters. Our results suggest that gene expansion/contraction and positive selection are diversifying the mechanisms of pathogenicity across this species complex.


PLOS Genetics | 2013

Transmission of Hypervirulence Traits via Sexual Reproduction within and between Lineages of the Human Fungal Pathogen Cryptococcus gattii

Kerstin Voelz; Hansong Ma; Sujal S. Phadke; Edmond J. Byrnes; Pinkuan Zhu; Olaf Mueller; Rhys A. Farrer; Daniel A. Henk; Yonathan Lewit; Yen-Ping Hsueh; Matthew C. Fisher; Alexander Idnurm; Joseph Heitman; Robin C. May

Since 1999 a lineage of the pathogen Cryptococcus gattii has been infecting humans and other animals in Canada and the Pacific Northwest of the USA. It is now the largest outbreak of a life-threatening fungal infection in a healthy population in recorded history. The high virulence of outbreak strains is closely linked to the ability of the pathogen to undergo rapid mitochondrial tubularisation and proliferation following engulfment by host phagocytes. Most outbreaks spread by geographic expansion across suitable niches, but it is known that genetic re-assortment and hybridisation can also lead to rapid range and host expansion. In the context of C. gattii, however, the likelihood of virulence traits associated with the outbreak lineages spreading to other lineages via genetic exchange is currently unknown. Here we address this question by conducting outgroup crosses between distantly related C. gattii lineages (VGII and VGIII) and ingroup crosses between isolates from the same molecular type (VGII). Systematic phenotypic characterisation shows that virulence traits are transmitted to outgroups infrequently, but readily inherited during ingroup crosses. In addition, we observed higher levels of biparental (as opposed to uniparental) mitochondrial inheritance during VGII ingroup sexual mating in this species and provide evidence for mitochondrial recombination following mating. Taken together, our data suggest that hypervirulence can spread among the C. gattii lineages VGII and VGIII, potentially creating novel hypervirulent genotypes, and that current models of uniparental mitochondrial inheritance in the Cryptococcus genus may not be universal.


mSphere | 2016

Genome Diversity, Recombination, and Virulence across the Major Lineages of Paracoccidioides

Jose F. Muñoz; Rhys A. Farrer; Christopher A. Desjardins; Juan Esteban Gallo; Sean Sykes; Sharadha Sakthikumar; Elizabeth Misas; Emily Whiston; Eduardo Bagagli; Célia Maria de Almeida Soares; Marcus de Melo Teixeira; John W. Taylor; Oliver K. Clay; Juan G. McEwen; Christina A. Cuomo

Characterization of genetic differences between lineages of the dimorphic human-pathogenic fungus Paracoccidioides can identify changes linked to important phenotypes and guide the development of new diagnostics and treatments. In this article, we compared genomes of 31 diverse isolates representing the major lineages of Paracoccidioides spp. and completed the first annotated genome sequences for the PS3 and PS4 lineages. We analyzed the population structure and characterized the genetic diversity among the lineages of Paracoccidioides, including a deep split of S1 into two lineages (S1a and S1b), and differentiated S1b, associated with most clinical cases, as the more highly recombining and diverse lineage. In addition, we found patterns of positive selection in surface proteins and secreted enzymes among the lineages, suggesting diversifying mechanisms of pathogenicity and adaptation across this species complex. These genetic differences suggest associations with the geographic range, pathogenicity, and ecological niches of Paracoccidioides lineages. ABSTRACT The Paracoccidioides genus includes two species of thermally dimorphic fungi that cause paracoccidioidomycosis, a neglected health-threatening human systemic mycosis endemic to Latin America. To examine the genome evolution and the diversity of Paracoccidioides spp., we conducted whole-genome sequencing of 31 isolates representing the phylogenetic, geographic, and ecological breadth of the genus. These samples included clinical, environmental and laboratory reference strains of the S1, PS2, PS3, and PS4 lineages of P. brasiliensis and also isolates of Paracoccidioides lutzii species. We completed the first annotated genome assemblies for the PS3 and PS4 lineages and found that gene order was highly conserved across the major lineages, with only a few chromosomal rearrangements. Comparing whole-genome assemblies of the major lineages with single-nucleotide polymorphisms (SNPs) predicted from the remaining 26 isolates, we identified a deep split of the S1 lineage into two clades we named S1a and S1b. We found evidence for greater genetic exchange between the S1b lineage and all other lineages; this may reflect the broad geographic range of S1b, which is often sympatric with the remaining, largely geographically isolated lineages. In addition, we found evidence of positive selection for the GP43 and PGA1 antigen genes and genes coding for other secreted proteins and proteases and lineage-specific loss-of-function mutations in cell wall and protease genes; these together may contribute to virulence and host immune response variation among natural isolates of Paracoccidioides spp. These insights into the recent evolutionary events highlight important differences between the lineages that could impact the distribution, pathogenicity, and ecology of Paracoccidioides. IMPORTANCE Characterization of genetic differences between lineages of the dimorphic human-pathogenic fungus Paracoccidioides can identify changes linked to important phenotypes and guide the development of new diagnostics and treatments. In this article, we compared genomes of 31 diverse isolates representing the major lineages of Paracoccidioides spp. and completed the first annotated genome sequences for the PS3 and PS4 lineages. We analyzed the population structure and characterized the genetic diversity among the lineages of Paracoccidioides, including a deep split of S1 into two lineages (S1a and S1b), and differentiated S1b, associated with most clinical cases, as the more highly recombining and diverse lineage. In addition, we found patterns of positive selection in surface proteins and secreted enzymes among the lineages, suggesting diversifying mechanisms of pathogenicity and adaptation across this species complex. These genetic differences suggest associations with the geographic range, pathogenicity, and ecological niches of Paracoccidioides lineages.

Collaboration


Dive into the Rhys A. Farrer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew A. Cunningham

Zoological Society of London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frances C. Clare

Zoological Society of London

View shared research outputs
Top Co-Authors

Avatar

Robin C. May

University of Birmingham

View shared research outputs
Researchain Logo
Decentralizing Knowledge