Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Johanne Agerlin Windeløv is active.

Publication


Featured researches published by Johanne Agerlin Windeløv.


Endocrinology | 2012

A Major Lineage of Enteroendocrine Cells Coexpress CCK, Secretin, GIP, GLP-1, PYY, and Neurotensin but Not Somatostatin

Kristoffer L. Egerod; Maja S. Engelstoft; Kaare V. Grunddal; Mark K. Nøhr; Anna Secher; Ichiro Sakata; Jens Pedersen; Johanne Agerlin Windeløv; Ernst-Martin Füchtbauer; Jørgen Olsen; F. Sundler; Jan Pravsgaard Christensen; Nils Wierup; J. Olsen; Jens J. Holst; Jeffrey M. Zigman; Steen Seier Poulsen; Thue W. Schwartz

Enteroendocrine cells such as duodenal cholecystokinin (CCK cells) are generally thought to be confined to certain segments of the gastrointestinal (GI) tract and to store and release peptides derived from only a single peptide precursor. In the current study, however, transgenic mice expressing enhanced green fluorescent protein (eGFP) under the control of the CCK promoter demonstrated a distribution pattern of CCK-eGFP positive cells that extended throughout the intestine. Quantitative PCR and liquid chromatography-mass spectrometry proteomic analyses of isolated, FACS-purified CCK-eGFP-positive cells demonstrated expression of not only CCK but also glucagon-like peptide 1 (GLP-1), gastric inhibitory peptide (GIP), peptide YY (PYY), neurotensin, and secretin, but not somatostatin. Immunohistochemistry confirmed this expression pattern. The broad coexpression phenomenon was observed both in crypts and villi as demonstrated by immunohistochemistry and FACS analysis of separated cell populations. Single-cell quantitative PCR indicated that approximately half of the duodenal CCK-eGFP cells express one peptide precursor in addition to CCK, whereas an additional smaller fraction expresses two peptide precursors in addition to CCK. The coexpression pattern was further confirmed through a cell ablation study based on expression of the human diphtheria toxin receptor under the control of the proglucagon promoter, in which activation of the receptor resulted in a marked reduction not only in GLP-1 cells, but also PYY, neurotensin, GIP, CCK, and secretin cells, whereas somatostatin cells were spared. Key elements of the coexpression pattern were confirmed by immunohistochemical double staining in human small intestine. It is concluded that a lineage of mature enteroendocrine cells have the ability to coexpress members of a group of functionally related peptides: CCK, secretin, GIP, GLP-1, PYY, and neurotensin, suggesting a potential therapeutic target for the treatment and prevention of diabetes and obesity.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2014

Fructose stimulates GLP-1 but not GIP secretion in mice, rats, and humans.

Rune E. Kuhre; Fiona M. Gribble; Bolette Hartmann; Frank Reimann; Johanne Agerlin Windeløv; Jens F. Rehfeld; Jens J. Holst

Nutrients often stimulate gut hormone secretion, but the effects of fructose are incompletely understood. We studied the effects of fructose on a number of gut hormones with particular focus on glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). In healthy humans, fructose intake caused a rise in blood glucose and plasma insulin and GLP-1, albeit to a lower degree than isocaloric glucose. Cholecystokinin secretion was stimulated similarly by both carbohydrates, but neither peptide YY3–36 nor glucagon secretion was affected by either treatment. Remarkably, while glucose potently stimulated GIP release, fructose was without effect. Similar patterns were found in the mouse and rat, with both fructose and glucose stimulating GLP-1 secretion, whereas only glucose caused GIP secretion. In GLUTag cells, a murine cell line used as model for L cells, fructose was metabolized and stimulated GLP-1 secretion dose-dependently (EC50 = 0.155 mM) by ATP-sensitive potassium channel closure and cell depolarization. Because fructose elicits GLP-1 secretion without simultaneous release of glucagonotropic GIP, the pathways underlying fructose-stimulated GLP-1 release might be useful targets for type 2 diabetes mellitus and obesity drug development.


Peptides | 2014

GLP-1 amidation efficiency along the length of the intestine in mice, rats and pigs and in GLP-1 secreting cell lines.

Rune E. Kuhre; Nicolai J. Wewer Albrechtsen; Johanne Agerlin Windeløv; Berit Svendsen; Bolette Hartmann; Jens J. Holst

XXX: Measurements of plasma concentrations of the incretin hormone GLP-1 are complex because of extensive molecular heterogeneity. This is partly due to a varying and incompletely known degree of C-terminal amidation. Given that virtually all GLP-1 assays rely on a C-terminal antibody, it is essential to know whether or not the molecule one wants to measure is amidated. We performed a detailed analysis of extractable GLP-1 from duodenum, proximal jejunum, distal ileum, caecum, proximal colon and distal colon of mice (n=9), rats (n=9) and pigs (n=8) and determined the degree of amidation and whether this varied with the six different locations. We also analyzed the amidation in 3 GLP-1 secreting cell lines (GLUTag, NCI-H716 and STC-1). To our surprise there were marked differences between the 3 species with respect to the concentration of GLP-1 in gut. In the mouse, concentrations increased continuously along the intestine all the way to the rectum, but were highest in the distal ileum and proximal colon of the rat. In the pig, very little or no GLP-1 was present before the distal ileum with similar levels from ileum to distal colon. In the mouse, GLP-1 was extensively amidated at all sampling sites, whereas rats and pigs on average had around 2.5 and 4 times higher levels of amidated compared to non-amidated GLP-1, although the ratio varied depending upon the location. GLUTag, NCI-H716 and STC-1 cells all exhibited partial amidation with 2-4 times higher levels of amidated compared to non-amidated GLP-1.


Diabetologia | 2016

Acute disruption of glucagon secretion or action does not improve glucose tolerance in an insulin-deficient mouse model of diabetes

Vivi R. Steenberg; Signe M. Jensen; Jens Pedersen; Andreas N. Madsen; Johanne Agerlin Windeløv; Birgitte Holst; Bjørn Quistorff; Steen Seier Poulsen; Jens J. Holst

Aims/hypothesisNormal glucose metabolism depends on pancreatic secretion of insulin and glucagon. The bihormonal hypothesis states that while lack of insulin leads to glucose underutilisation, glucagon excess is the principal factor in diabetic glucose overproduction. A recent study reported that streptozotocin-treated glucagon receptor knockout mice have normal glucose tolerance. We investigated the impact of acute disruption of glucagon secretin or action in a mouse model of severe diabetes by three different approaches: (1) alpha cell elimination; (2) glucagon immunoneutralisation; and (3) glucagon receptor antagonism, in order to evaluate the effect of these on glucose tolerance.MethodsSevere diabetes was induced in transgenic and wild-type mice by streptozotocin. Glucose metabolism was investigated using OGTT in transgenic mice with the human diphtheria toxin receptor expressed in proglucagon producing cells allowing for diphtheria toxin (DT)-induced alpha cell ablation and in mice treated with either a specific high affinity glucagon antibody or a specific glucagon receptor antagonist.ResultsNear-total alpha cell elimination was induced in transgenic mice upon DT administration and resulted in a massive decrease in pancreatic glucagon content. Oral glucose tolerance in diabetic mice was neither affected by glucagon immunoneutralisation, glucagon receptor antagonism, nor alpha cell removal, but did not deteriorate further compared with mice with intact alpha cell mass.Conclusions/interpretationDisruption of glucagon action/secretion did not improve glucose tolerance in diabetic mice. Near-total alpha cell elimination may have prevented further deterioration. Our findings support insulin lack as the major factor underlying hyperglycaemia in beta cell-deficient diabetes.


American Journal of Physiology-endocrinology and Metabolism | 2013

Glucose metabolism is altered after loss of L cells and α-cells but not influenced by loss of K cells

Jens Pedersen; Randi Ugleholdt; Signe Marie Jørgensen; Johanne Agerlin Windeløv; Kaare V. Grunddal; Thue Schwartz; Ernst-Martin Füchtbauer; Steen Seier Poulsen; Peter J. Holst; Jens J. Holst

The enteroendocrine K and L cells are responsible for secretion of glucose-dependent insulinotropic polypeptide (GIP) and glucagon like-peptide 1 (GLP-1), whereas pancreatic α-cells are responsible for secretion of glucagon. In rodents and humans, dysregulation of the secretion of GIP, GLP-1, and glucagon is associated with impaired regulation of metabolism. This study evaluates the consequences of acute removal of Gip- or Gcg-expressing cells on glucose metabolism. Generation of the two diphtheria toxin receptor cellular knockout mice, TgN(GIP.DTR) and TgN(GCG.DTR), allowed us to study effects of acute ablation of K and L cells and α-cells. Diphtheria toxin administration reduced the expression of Gip and content of GIP in the proximal jejunum in TgN(GIP.DTR) and expression of Gcg and content of proglucagon-derived peptides in both proximal jejunum and terminal ileum as well as content of glucagon in pancreas in TgN(GCG.DTR) compared with wild-type mice. GIP response to oral glucose was attenuated following K cell loss, but oral and intraperitoneal glucose tolerances were unaffected. Intraperitoneal glucose tolerance was impaired following combined L cell and α-cell loss and normal following α-cell loss. Oral glucose tolerance was improved following L cell and α-cell loss and supernormal following α-cell loss. We present two mouse models that allow studies of the effects of K cell or L cell and α-cell loss as well as isolated α-cell loss. Our findings show that intraperitoneal glucose tolerance is dependent on an intact L cell mass and underscore the diabetogenic effects of α-cell signaling. Furthermore, the results suggest that K cells are less involved in acute regulation of mouse glucose metabolism than L cells and α-cells.


Journal of Diabetes Investigation | 2016

Searching for the physiological role of glucose‐dependent insulinotropic polypeptide

Jens J. Holst; Johanne Agerlin Windeløv; Geke Aline Boer; Jens Pedersen; Berit Svendsen; Mikkel Christensen; Signe S. Torekov; Meena Asmar; Bolette Hartmann; Anne Nissen

Glucose‐dependent insulinotropic polypeptide (GIP) was established as a gut hormone more than 40 years ago, and there is good experimental support for its role as an incretin hormone although deletion of the GIP receptor or the GIP cells or GIP receptor mutations have only minor effects on glucose metabolism. Unlike the related hormone, GLP‐1, GIP stimulates the secretion of glucagon, which in healthy individuals may help to stabilize glucose levels, but in people with type 2 diabetes may contribute to glucose intolerance. A role in lipid metabolism is supported by numerous indirect observations and by resistance to diet‐induced obesity after deletion of the GIP receptor. However, a clear effect on lipid clearance could not be identified in humans, raising doubt about its importance. The GIP receptor is widely expressed in the body and also appears to be expressed on bone cells, and experimental studies in rodent point to effects on bone metabolism. Recent studies revealed pronounced inhibitory effects of GIP on bone resorption markers in humans and suggest that GIP may be (one of the) gastrointestinal regulators of bone turn‐over. In support of this, a loss‐of‐function GIP receptor mutation in humans is associated with a marked increase in fracture risk. The lack of a reliable GIP receptor antagonist contributes to the uncertainty regarding the physiological role of GIP.


The Journal of Physiology | 2015

Sensing of triacylglycerol in the gut: different mechanisms for fatty acids and 2‐monoacylglycerol

Karen Kleberg; Anne Jacobsen; Jozélia G. Ferreira; Johanne Agerlin Windeløv; Jens F. Rehfeld; Jens J. Holst; Ivan E. de Araujo; Harald S. Hansen

Digestion is required for intestinal sensing of triacylglycerol in this behavioural model. The hydrolysis products of triacylglycerol, fatty acids and 2‐monoacylglycerol, regulate feeding via separate mechanisms. Sensing of long‐chain fatty acids, but not of 2‐monoacylglycerol, stimulated central dopaminergic signalling. Fatty acid chain length regulates behavioural responses to fatty acids.


Physiological Reports | 2016

Use of anesthesia dramatically alters the oral glucose tolerance and insulin secretion in C57Bl/6 mice

Johanne Agerlin Windeløv; Jens Pedersen; Jens J. Holst

Evaluation of the impact of anesthesia on oral glucose tolerance in mice. Anesthesia is often used when performing OGTT in mice to avoid the stress of gavage and blood sampling, although anesthesia may influence gastrointestinal motility, blood glucose, and plasma insulin dynamics. C57Bl/6 mice were anesthetized using the following commonly used regimens: (1) hypnorm/midazolam repetitive or single injection; (2) ketamine/xylazine; (3) isoflurane; (4) pentobarbital; and (5) A saline injected, nonanesthetized group. Oral glucose was administered at time 0 min and blood glucose measured in the time frame −15 to +150 min. Plasma insulin concentration was measured at time 0 and 20 min. All four anesthetic regimens resulted in impaired glucose tolerance compared to saline/no anesthesia. (1) hypnorm/midazolam increased insulin concentrations and caused an altered glucose tolerance; (2) ketamine/xylazine lowered insulin responses and resulted in severe hyperglycemia throughout the experiment; (3) isoflurane did not only alter the insulin secretion but also resulted in severe hyperglycemia; (4) pentobarbital resulted in both increased insulin secretion and impaired glucose tolerance. All four anesthetic regimens altered the oral glucose tolerance, and we conclude that anesthesia should not be used when performing metabolic studies in mice.


American Journal of Physiology-endocrinology and Metabolism | 2016

Dynamics of glucagon secretion in mice and rats revealed using a validated sandwich ELISA for small sample volumes

Nicolai J. Wewer Albrechtsen; Rune E. Kuhre; Johanne Agerlin Windeløv; Anne Ørgaard; Carolyn F. Deacon; Hannelouise Kissow; Bolette Hartmann; Jens J. Holst

Glucagon is a metabolically important hormone, but many aspects of its physiology remain obscure, because glucagon secretion is difficult to measure in mice and rats due to methodological inadequacies. Here, we introduce and validate a low-volume, enzyme-linked immunosorbent glucagon assay according to current analytical guidelines, including tests of sensitivity, specificity, and accuracy, and compare it, using the Bland-Altman algorithm and size-exclusion chromatography, with three other widely cited assays. After demonstrating adequate performance of the assay, we measured glucagon secretion in response to intravenous glucose and arginine in anesthetized mice (isoflurane) and rats (Hypnorm/midazolam). Glucose caused a long-lasting suppression to very low values (1-2 pmol/l) within 2 min in both species. Arginine stimulated secretion 8- to 10-fold in both species, peaking at 1-2 min and returning to basal levels at 6 min (mice) and 12 min (rats). d-Mannitol (osmotic control) was without effect. Ketamine/xylazine anesthesia in mice strongly attenuated (P < 0.01) α-cell responses. Chromatography of pooled plasma samples confirmed the accuracy of the assay. In conclusion, dynamic analysis of glucagon secretion in rats and mice with the novel accurate sandwich enzyme-linked immunosorbent assay revealed extremely rapid and short-lived responses to arginine and rapid and profound suppression by glucose.


PLOS ONE | 2018

Endogenous glucagon-like peptide- 1 and 2 are essential for regeneration after acute intestinal injury in mice

Rasmus Hytting-Andreasen; Emilie Balk-Møller; Bolette Hartmann; Jens Z. Pedersen; Johanne Agerlin Windeløv; Jens J. Holst; Hannelouise Kissow

Objective Mucositis is a side effect of chemotherapy seen in the digestive tract, with symptoms including pain, diarrhoea, inflammation and ulcerations. Our aim was to investigate whether endogenous glucagon-like peptide -1 and -2 (GLP-1 and GLP-2) are implicated in intestinal healing after chemotherapy-induced mucositis. Design We used a transgenic mouse model Tg(GCG.DTR)(Tg) expressing the human diphtheria toxin receptor in the proglucagon-producing cells. Injections with diphtheria toxin ablated the GLP-1 and GLP-2 producing L-cells in Tg mice with no effect in wild-type (WT) mice. Mice were injected with 5-fluorouracil or saline and received vehicle, exendin-4, teduglutide (gly2-GLP-2), or exendin-4/teduglutide in combination. The endpoints were body weight change, small intestinal weight, morphology, histological scoring of mucositis and myeloperoxidase levels. Results Ablation of L-cells led to impaired GLP-2 secretion; increased loss of body weight; lower small intestinal weight; lower crypt depth, villus height and mucosal area; and increased the mucositis severity score in mice given 5-fluorouracil. WT mice showed compensatory hyperproliferation as a sign of regeneration in the recovery phase. Co-treatment with exendin-4 and teduglutide rescued the body weight of the Tg mice and led to a hyperproliferation in the small intestine, whereas single treatment was less effective. Conclusion The ablation of L-cells leads to severe mucositis and insufficient intestinal healing, shown by severe body weight loss and lack of compensatory hyperproliferation in the recovery phase. Co-treatment with exendin-4 and teduglutide could prevent this. Because both peptides were needed, we can conclude that both GLP-1 and GLP-2 are essential for intestinal healing in mice.

Collaboration


Dive into the Johanne Agerlin Windeløv's collaboration.

Top Co-Authors

Avatar

Jens J. Holst

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jens Pedersen

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rune E. Kuhre

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne Ørgaard

University of Copenhagen

View shared research outputs
Researchain Logo
Decentralizing Knowledge