Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Johanne Brunet is active.

Publication


Featured researches published by Johanne Brunet.


Evolution | 1995

FLORAL SEX ALLOCATION IN SEQUENTIALLY BLOOMING PLANTS

Johanne Brunet; Deborah Charlesworth

In plants whose flowers develop in a sequence, different flowers may exhibit temporal variation in pollen donation and receipt such that the fitness contributions through male and female functions can vary among flowers. Dichogamy, or directional pollinator movements within inflorescences, can create situations where flowers in different stages in the sequence may differ in the numbers of flowers in the female stage available as potential mates. We present an evolutionarily stable strategy (ESS) analysis of the resource allocations expected in different flowers in hermaphroditic plants when the mating environments vary among flowers. This introduces a modular element into sex‐allocation models. Our analysis shows that such variation in the mating environments of flowers can select for differences in sex allocation between flowers. When male and female fertilities are nonlinear functions of the allocations, variation in resource availability can also select for variation in sex allocation among flowers. The influence of dichogamy and pollinator directionality on floral sex allocation is discussed, and the empirical evidence supporting the predictions derived from the model is briefly reviewed. The implications of our results for the evolution of andromonoecy and monoecy are discussed.


Trends in Ecology and Evolution | 1990

Hypotheses for the evolution of dioecy in seed plants

James D. Thomson; Johanne Brunet

Over the last decade, new hypotheses have been proposed for the evolution of dioecy in plants. Most of the selective mechanisms invoked have been suggested and supported by phylogenetic correlations. Here we review (1) the validity of the correlations (especially in light of recent critiques of the comparative method), and (2) the conformity of the proposed mechanisms to empirical data. None of the hypotheses can be flatly rejected on existing evidence, but the strength of their support varies. Future correlational studies must explicitly consider phylogeny; more importantly, such broad studies should also be supplemented by detailed studies of particular transitions to dioecy (e.g. within genera) - studies of the sort that have clarified analogous issues such as heterostyly.


Trends in Ecology and Evolution | 1992

Sex allocation in hermaphroditic plants.

Johanne Brunet

Hermaphroditic plants allocate their reproductive resources to different functions: male, female and pollinator attraction. While earlier sex-allocation models considered only male and female functions, more recent ones can divide reproductive resources into multiple functions. The basic predictions derived from these models are similar. While most models predict sex allocation at the fruit stage (pollen and seeds), some have examined allocation at the flower stage (pollen and ovules). Selfing rate, mode of pollination and competition among offspring of the same parent are some of the factors that can influence sex allocation among populations. Although the empirical evidence lags behind the theoretical development, sex-allocation theory has been quite successful at predicting trends among populations.


Evolution | 2006

IMPACT OF INSECT POLLINATOR GROUP AND FLORAL DISPLAY SIZE ON OUTCROSSING RATE

Johanne Brunet; Heather R. Sweet

Abstract Despite the strong influence of pollination ecology on the evolution of selfing, we have little information on how distinct groups of insect pollinators influence outcrossing rate. However, differences in behavior between pollinator groups could easily influence how each group affects outcrossing rate. We examined the influence of distinct insect pollinator groups on outcrossing rate in the rocky mountain columbine, Aquilegia coerulea. The impact of population size, plant density, size of floral display, and herkogamy (spatial separation between anthers and stigmas) on outcrossing rate was also considered as these variables were previously found to affect outcrossing rate in some plant species. We quantified correlations between all independent variables and used simple and two‐factor regressions to determine direct and indirect impact of each independent variable on outcrossing rate. Outcrossing rate increased significantly with hawkmoth abundance but not with the abundance of any of the other groups of floral visitors, which included bumblebees, solitary bees, syrphid flies, and muscidae. Outcrossing rate was also significantly affected by floral display size and together, hawkmoth abundance and floral display size explained 87% of the variation in outcrossing rate. None of the other independent variables directly affected the outcrossing rate. This is the first report of a significant impact of pollinator type on outcrossing rate. Hawkmoths did not visit fewer flowers per plant relative to other pollinator groups but preferred visiting female‐phase flowers first on a plant. Both the behavior of pollinators and floral display size affected outcrossing rate via their impact on the level of geitonogamous (among flower) selfing. Given that geitonogamous selfing is never advantageous, the variation in outcrossing rate and maintenance of mixed mating systems in populations of A. coerulea may not require an adaptive explanation


Evolution | 1993

Differential success of pollen donors in a self-compatible lily

Lisa P. Rigney; James D. Thomson; Mitchell B. Cruzan; Johanne Brunet

If pollen donors are equally effective at siring seeds, the presence of equal proportions of pollen from two pollen donors on a stigma will lead to equal proportions of seeds sired by each pollen donor. Variation in germination rates, pollen‐tube growth, and embryo viability may cause one donor to sire more seed than another. We looked for differential donor success in the field by simultaneously applying equal amounts of pollen from two pollen donors. We simultaneously applied equal amounts of self and outcross pollen to receptive stigmas and simultaneously applied pollen from two donors at different physical distances from the recipient. Following simultaneous application of self and outcross pollen, significantly more of the seeds were sired by outcross pollen donors. Seed set following simultaneous application of two outcross donors was also nonrandom. Pollen donors from 100 m were more likely to sire seeds when competing with pollen from plants nearby (1 m). To determine whether pollen‐tube growth rates were responsible for these patterns of paternity, we varied the timing of deposition of outcross pollen allowing self pollen tubes a head start on the stigma. Outcross pollen was applied 3 or 24 h after self pollen. In spite of this time delay, the majority of the seeds were again sired by outcross pollen. There was no significant difference in the amount of seeds sired by self pollen between the two delay treatments. This result suggests that mechanisms operating after ovule fertilization may contribute to the discordance between the proportions of the pollen present and the proportions of seeds sired.


American Journal of Botany | 2013

Genetic structure and domestication of carrot (Daucus carota subsp. sativus) (Apiaceae)

Massimo Iorizzo; Douglas Senalik; Shelby Ellison; Pablo F. Cavagnaro; Charlotte J. Allender; Johanne Brunet; David M. Spooner; Allen Van Deynze; Philipp W. Simon

UNLABELLED PREMISE OF THE STUDY Analyses of genetic structure and phylogenetic relationships illuminate the origin and domestication of modern crops. Despite being an important worldwide vegetable, the genetic structure and domestication of carrot (Daucus carota) is poorly understood. We provide the first such study using a large data set of molecular markers and accessions that are widely dispersed around the world. • METHODS Sequencing data from the carrot transcriptome were used to develop 4000 single nucleotide polymorphisms (SNPs). Eighty-four genotypes, including a geographically well-distributed subset of wild and cultivated carrots, were genotyped using the KASPar assay. • KEY RESULTS Analysis of allelic diversity of SNP data revealed no reduction of genetic diversity in cultivated vs. wild accessions. Structure and phylogenetic analysis indicated a clear separation between wild and cultivated accessions as well as between eastern and western cultivated carrot. Among the wild carrots, those from Central Asia were genetically most similar to cultivated accessions. Furthermore, we found that wild carrots from North America were most closely related to European wild accessions. • CONCLUSIONS Comparing the genetic diversity of wild and cultivated accessions suggested the absence of a genetic bottleneck during carrot domestication. In conjunction with historical documents, our results suggest an origin of domesticated carrot in Central Asia. Wild carrots from North America were likely introduced as weeds with European colonization. These results provide answers to long-debated questions of carrot evolution and domestication and inform germplasm curators and breeders on genetic substructure of carrot genetic resources.


Annals of Botany | 2009

Pollinators of the Rocky Mountain columbine: temporal variation, functional groups and associations with floral traits.

Johanne Brunet

BACKGROUND AND AIMS Pollinators together with other biotic and some abiotic factors can select for floral traits. However, variation in pollinator abundance over time and space can weaken such selection. In the present study, the variation in pollinator abundance over time and space was examined in populations of the Rocky Mountain columbine. The variation in three floral traits is described and correlations between pollinator type, functional pollinator groups or altitude and floral traits are examined. METHODS Pollinator observations took place in six Aquilegia coerulea populations over 1-4 years and spur length, flower colour and sepal length were measured in 12 populations. Pollinator abundance, measured as visits per flower per hour, was compared among populations and years. Pollinators were grouped into two functional groups: pollen or nectar collectors. The following associations were examined: annual presence of hawkmoths and whiter flowers with longer spurs; the presence of Sphinx vashti and longer spurs; and higher altitudes and whiter flowers. The study looked at whether an increase in the proportion of hawkmoths in a population was associated with whiter and larger flowers with longer spurs. KEY RESULTS The abundance of different pollinator groups varied over time and space. Floral traits varied among populations. Higher altitude was correlated with bluer flowers. Whiter flowers were associated with the annual presence of hawkmoths. Populations visited by Sphinx vashti had longer spurs than populations visited only by Hyles lineata. Populations with greater percentage of nectar-collecting pollinators did not have whiter, larger flowers with longer spurs. CONCLUSIONS Despite the large variation in pollinator abundance over time and space, one species of bumble-bee or hawkmoth tended to predominate in each population each year. Future studies of Aquilegia coerulea should examine the specific influences of pollinators and the environment on flower colour and of hawkmoth species on spur length.


American Journal of Botany | 2009

Patterns of hybridization and introgression between invasive Ulmus pumila (Ulmaceae) and native U. rubra.

Juan Zalapa; Johanne Brunet; Raymond P. Guries

Natural hybridization between introduced species and their native congeners occurs frequently and can create serious conservation concerns. Ulmus pumila (Siberian elm) is an introduced Asian elm species that has naturalized in the United States and is now considered invasive in 41 states. Red elm (U. rubra), a native to the eastern United States, often occurs in sympatry with Siberian elm, and the two species are thought to hybridize. Here, we genetically characterized reference populations of the two elm species to identify species-specific microsatellite alleles. These markers were used to classify individuals in putative hybrid zones as parental species or hybrids, assess the extent of hybridization, and track patterns of introgression. We identified nine U. rubra, 32 U. pumila, and 51 hybrid individuals in our hybrid zones. Of the 51 hybrids, 35 were classified as first-generation hybrids and 16 as backcrosses. The majority of the backcrosses (88%) were introgressed toward U. pumila. Our classification of genotypes was consistent whether we used manual classification, principal coordinate analyses or Bayesian clustering. We observed greater genetic diversity and new combination of alleles in the hybrids. Our study indicates widespread hybridization between U. pumila and U. rubra and an asymmetric pattern of introgression toward U. pumila.


Molecular Phylogenetics and Evolution | 2012

Phylogenetic insights into the correlates of dioecy in meadow-rues (Thalictrum, Ranunculaceae)

Valerie L. Soza; Johanne Brunet; Aaron Liston; Patricia Salles Smith; Verónica S. Di Stilio

Numerous studies have examined the evolution of sexual systems in angiosperms, but few explore the interaction between these and the evolution of pollination mode. Wind pollination is often associated with unisexual flowers, but which evolved first and played a causative role in the evolution of the other is unclear. Thalictrum, meadow-rues (Ranunculaceae), provides a unique opportunity to study the evolution of these traits because it contains insect and wind pollination and four sexual systems. We used a phylogenetic approach to reconstruct ancestral states for sexual system, pollination mode, and geographic distribution in Thalictrum, and tested for correlations to uncover the factors involved in the evolution of unisexuality and wind pollination. Our results show that dioecy, andro- and gynomonoecy evolved at least twice from hermaphroditism. Wind pollination, unisexual flowers, and New World distribution were all significantly correlated. Wind pollination may have evolved early in the genus, followed by multiple losses and gains, and likely preceded the origin of unisexual flowers in several cases; we found no evidence for unisexual flowers evolving prior to wind pollination. Given a broad scale study showing the evolution of dioecy before wind pollination, our results from a finer scale analysis highlight that different evolutionary pathways are likely to occur throughout angiosperms.


Evolutionary Applications | 2010

The extent of hybridization and its impact on the genetic diversity and population structure of an invasive tree, Ulmus pumila (Ulmaceae).

Juan Zalapa; Johanne Brunet; Raymond P. Guries

Ulmus pumila is considered an invasive tree in 41 of the United States. In this study, we examined the extent of hybridization in naturalized populations of U. pumila, its impact on genetic diversity and genetic structure and its potential role in explaining the invasion process of U. pumila. Genetic analyses indicated widespread hybridization with native Ulmus rubra in naturalized U. pumila populations. Hybridization increased the genetic diversity of U. pumila populations and affected their genetic structure. The level of genetic diversity in ‘mature’ accessions, many of which may represent original plantings throughout the USA, was high and similar to the diversity of East Asian accessions. Hybridization with the native red elm may play an important role in the success of Siberian elm as an invader in temperate regions of the USA.

Collaboration


Dive into the Johanne Brunet's collaboration.

Top Co-Authors

Avatar

Juan Zalapa

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Raymond P. Guries

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aaron Liston

Oregon State University

View shared research outputs
Top Co-Authors

Avatar

Brandon Schlautman

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Christy M. Stewart

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zachary Larson-Rabin

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Heidi Hirsch

Stellenbosch University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge