Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Juan Zalapa is active.

Publication


Featured researches published by Juan Zalapa.


American Journal of Botany | 2012

Using next-generation sequencing approaches to isolate simple sequence repeat (SSR) loci in the plant sciences

Juan Zalapa; Hugo Cuevas; Huayu Zhu; Shawn A. Steffan; Douglas Senalik; Eric L. Zeldin; Brent H. McCown; Rebecca Harbut; Philipp W. Simon

The application of next-generation sequencing (NGS) technologies for the development of simple sequence repeat (SSR) or microsatellite loci for genetic research in the botanical sciences is described. Microsatellite markers are one of the most informative and versatile DNA-based markers used in plant genetic research, but their development has traditionally been a difficult and costly process. NGS technologies allow the efficient identification of large numbers of microsatellites at a fraction of the cost and effort of traditional approaches. The major advantage of NGS methods is their ability to produce large amounts of sequence data from which to isolate and develop numerous genome-wide and gene-based microsatellite loci. The two major NGS technologies with emergent application in SSR isolation are 454 and Illumina. A review is provided of several recent studies demonstrating the efficient use of 454 and Illumina technologies for the discovery of microsatellites in plants. Additionally, important aspects during NGS isolation and development of microsatellites are discussed, including the use of computational tools and high-throughput genotyping methods. A data set of microsatellite loci in the plastome and mitochondriome of cranberry (Vaccinium macrocarpon Ait.) is provided to illustrate a successful application of 454 sequencing for SSR discovery. In the future, NGS technologies will massively increase the number of SSRs and other genetic markers available to conduct genetic research in understudied but economically important crops such as cranberry.


Journal of Counseling Psychology | 2010

Influence of Social Cognitive and Ethnic Variables on Academic Goals of Underrepresented Students in Science and Engineering: A Multiple-Groups Analysis

Angela Byars-Winston; Yannine Estrada; Christina Howard; Dalelia Davis; Juan Zalapa

This study investigated the academic interests and goals of 223 African American, Latino/a, Southeast Asian, and Native American undergraduate students in two groups: biological science and engineering (S/E) majors. Using social cognitive career theory (Lent, Brown, & Hackett, 1994), we examined the relationships of social cognitive variables (math/science academic self-efficacy, math/science outcome expectations), along with the influence of ethnic variables (ethnic identity, other-group orientation) and perceptions of campus climate to their math/science interests and goal commitment to earn an S/E degree. Path analysis revealed that the hypothesized model provided good overall fit to the data, revealing significant relationships from outcome expectations to interests and to goals. Paths from academic self-efficacy to S/E goals and from interests to S/E goals varied for students in engineering and biological science. For both groups, other-group orientation was positively related to self-efficacy and support was found for an efficacy-mediated relationship between perceived campus climate and goals. Theoretical and practical implications of the studys findings are considered as well as future research directions.


BMC Plant Biology | 2011

A consensus linkage map for molecular markers and quantitative trait loci associated with economically important traits in melon (Cucumis melo L.).

Aurora Díaz; Mohamed Fergany; Gelsomina Formisano; Peio Ziarsolo; José Blanca; Zhanjun Fei; Jack E. Staub; Juan Zalapa; Hugo Cuevas; Gayle Dace; M. Oliver; Nathalie Boissot; Catherine Dogimont; Michel Pitrat; René Hofstede; Paul van Koert; Rotem Harel-Beja; Galil Tzuri; Vitaly Portnoy; Shahar Cohen; Arthur A. Schaffer; Nurit Katzir; Yong Xu; Haiying Zhang; Nobuko Fukino; Satoru Matsumoto; Jordi Garcia-Mas; Antonio J. Monforte

BackgroundA number of molecular marker linkage maps have been developed for melon (Cucumis melo L.) over the last two decades. However, these maps were constructed using different marker sets, thus, making comparative analysis among maps difficult. In order to solve this problem, a consensus genetic map in melon was constructed using primarily highly transferable anchor markers that have broad potential use for mapping, synteny, and comparative quantitative trait loci (QTL) analysis, increasing breeding effectiveness and efficiency via marker-assisted selection (MAS).ResultsUnder the framework of the International Cucurbit Genomics Initiative (ICuGI, http://www.icugi.org), an integrated genetic map has been constructed by merging data from eight independent mapping experiments using a genetically diverse array of parental lines. The consensus map spans 1150 cM across the 12 melon linkage groups and is composed of 1592 markers (640 SSRs, 330 SNPs, 252 AFLPs, 239 RFLPs, 89 RAPDs, 15 IMAs, 16 indels and 11 morphological traits) with a mean marker density of 0.72 cM/marker. One hundred and ninety-six of these markers (157 SSRs, 32 SNPs, 6 indels and 1 RAPD) were newly developed, mapped or provided by industry representatives as released markers, including 27 SNPs and 5 indels from genes involved in the organic acid metabolism and transport, and 58 EST-SSRs. Additionally, 85 of 822 SSR markers contributed by Syngenta Seeds were included in the integrated map. In addition, 370 QTL controlling 62 traits from 18 previously reported mapping experiments using genetically diverse parental genotypes were also integrated into the consensus map. Some QTL associated with economically important traits detected in separate studies mapped to similar genomic positions. For example, independently identified QTL controlling fruit shape were mapped on similar genomic positions, suggesting that such QTL are possibly responsible for the phenotypic variability observed for this trait in a broad array of melon germplasm.ConclusionsEven though relatively unsaturated genetic maps in a diverse set of melon market types have been published, the integrated saturated map presented herein should be considered the initial reference map for melon. Most of the mapped markers contained in the reference map are polymorphic in diverse collection of germplasm, and thus are potentially transferrable to a broad array of genetic experimentation (e.g., integration of physical and genetic maps, colinearity analysis, map-based gene cloning, epistasis dissection, and marker-assisted selection).


American Journal of Botany | 2009

Patterns of hybridization and introgression between invasive Ulmus pumila (Ulmaceae) and native U. rubra.

Juan Zalapa; Johanne Brunet; Raymond P. Guries

Natural hybridization between introduced species and their native congeners occurs frequently and can create serious conservation concerns. Ulmus pumila (Siberian elm) is an introduced Asian elm species that has naturalized in the United States and is now considered invasive in 41 states. Red elm (U. rubra), a native to the eastern United States, often occurs in sympatry with Siberian elm, and the two species are thought to hybridize. Here, we genetically characterized reference populations of the two elm species to identify species-specific microsatellite alleles. These markers were used to classify individuals in putative hybrid zones as parental species or hybrids, assess the extent of hybridization, and track patterns of introgression. We identified nine U. rubra, 32 U. pumila, and 51 hybrid individuals in our hybrid zones. Of the 51 hybrids, 35 were classified as first-generation hybrids and 16 as backcrosses. The majority of the backcrosses (88%) were introgressed toward U. pumila. Our classification of genotypes was consistent whether we used manual classification, principal coordinate analyses or Bayesian clustering. We observed greater genetic diversity and new combination of alleles in the hybrids. Our study indicates widespread hybridization between U. pumila and U. rubra and an asymmetric pattern of introgression toward U. pumila.


BMC Genomics | 2011

Syntenic relationships between cucumber (Cucumis sativus L.) and melon (C. melo L.) chromosomes as revealed by comparative genetic mapping

Dawei Li; Hugo Cuevas; Luming Yang; Yuhong Li; Jordi Garcia-Mas; Juan Zalapa; Jack E. Staub; Feishi Luan; Umesh K. Reddy; Xiaoming He; Zhen-Hui Gong; Yiqun Weng

BackgroundCucumber, Cucumis sativus L. (2n = 2 × = 14) and melon, C. melo L. (2n = 2 × = 24) are two important vegetable species in the genus Cucumis (family Cucurbitaceae). Both species have an Asian origin that diverged approximately nine million years ago. Cucumber is believed to have evolved from melon through chromosome fusion, but the details of this process are largely unknown. In this study, comparative genetic mapping between cucumber and melon was conducted to examine syntenic relationships of their chromosomes.ResultsUsing two melon mapping populations, 154 and 127 cucumber SSR markers were added onto previously reported F2- and RIL-based genetic maps, respectively. A consensus melon linkage map was developed through map integration, which contained 401 co-dominant markers in 12 linkage groups including 199 markers derived from the cucumber genome. Syntenic relationships between melon and cucumber chromosomes were inferred based on associations between markers on the consensus melon map and cucumber draft genome scaffolds. It was determined that cucumber Chromosome 7 was syntenic to melon Chromosome I. Cucumber Chromosomes 2 and 6 each contained genomic regions that were syntenic with melon chromosomes III+V+XI and III+VIII+XI, respectively. Likewise, cucumber Chromosomes 1, 3, 4, and 5 each was syntenic with genomic regions of two melon chromosomes previously designated as II+XII, IV+VI, VII+VIII, and IX+X, respectively. However, the marker orders in several syntenic blocks on these consensus linkage maps were not co-linear suggesting that more complicated structural changes beyond simple chromosome fusion events have occurred during the evolution of cucumber.ConclusionsComparative mapping conducted herein supported the hypothesis that cucumber chromosomes may be the result of chromosome fusion from a 24-chromosome progenitor species. Except for a possible inversion, cucumber Chromosome 7 has largely remained intact in the past nine million years since its divergence from melon. Meanwhile, many structural changes may have occurred during the evolution of the remaining six cucumber chromosomes. Further characterization of the genomic nature of Cucumis species closely related to cucumber and melon might provide a better understanding of the evolutionary history leading to modern cucumber.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Microbes are trophic analogs of animals

Shawn A. Steffan; Yoshito Chikaraishi; Cameron R. Currie; Heidi A. Horn; Hannah R. Gaines-Day; Jonathan N. Pauli; Juan Zalapa; Naohiko Ohkouchi

Significance We report evidence that microbes are trophically equivalent to animals. When bacteria or fungi are fed the same diets as animals, the microbes register the same trophic position as animals. This discovery reframes how microbes can be viewed within food chains and facilitates the inclusion of the microbiome in functional diversity studies. To demonstrate the broad applicability of our approach, we investigated the ancient symbioses represented by leaf-cutter ant fungus gardens, revealing four discrete trophic levels within this community and providing evidence that fungi, not ants, are the dominant herbivores of the Neotropics. Altogether, we show that microbes can be integrated with plants and animals in a food chain, thereby unifying the macro- and microbiome in studies of trophic ecology. In most ecosystems, microbes are the dominant consumers, commandeering much of the heterotrophic biomass circulating through food webs. Characterizing functional diversity within the microbiome, therefore, is critical to understanding ecosystem functioning, particularly in an era of global biodiversity loss. Using isotopic fingerprinting, we investigated the trophic positions of a broad diversity of heterotrophic organisms. Specifically, we examined the naturally occurring stable isotopes of nitrogen (15N:14N) within amino acids extracted from proteobacteria, actinomycetes, ascomycetes, and basidiomycetes, as well as from vertebrate and invertebrate macrofauna (crustaceans, fish, insects, and mammals). Here, we report that patterns of intertrophic 15N-discrimination were remarkably similar among bacteria, fungi, and animals, which permitted unambiguous measurement of consumer trophic position, independent of phylogeny or ecosystem type. The observed similarities among bacterial, fungal, and animal consumers suggest that within a trophic hierarchy, microbiota are equivalent to, and can be interdigitated with, macrobiota. To further test the universality of this finding, we examined Neotropical fungus gardens, communities in which bacteria, fungi, and animals are entwined in an ancient, quadripartite symbiosis. We reveal that this symbiosis is a discrete four-level food chain, wherein bacteria function as the apex carnivores, animals and fungi are meso-consumers, and the sole herbivores are fungi. Together, our findings demonstrate that bacteria, fungi, and animals can be integrated within a food chain, effectively uniting the macro- and microbiome in food web ecology and facilitating greater inclusion of the microbiome in studies of functional diversity.


Evolutionary Applications | 2010

The extent of hybridization and its impact on the genetic diversity and population structure of an invasive tree, Ulmus pumila (Ulmaceae).

Juan Zalapa; Johanne Brunet; Raymond P. Guries

Ulmus pumila is considered an invasive tree in 41 of the United States. In this study, we examined the extent of hybridization in naturalized populations of U. pumila, its impact on genetic diversity and genetic structure and its potential role in explaining the invasion process of U. pumila. Genetic analyses indicated widespread hybridization with native Ulmus rubra in naturalized U. pumila populations. Hybridization increased the genetic diversity of U. pumila populations and affected their genetic structure. The level of genetic diversity in ‘mature’ accessions, many of which may represent original plantings throughout the USA, was high and similar to the diversity of East Asian accessions. Hybridization with the native red elm may play an important role in the success of Siberian elm as an invader in temperate regions of the USA.


BMC Plant Biology | 2014

The American cranberry: first insights into the whole genome of a species adapted to bog habitat

James J. Polashock; Ehud Zelzion; Diego Fajardo; Juan Zalapa; Laura Georgi; Debashish Bhattacharya; Nicholi Vorsa

BackgroundThe American cranberry (Vaccinium macrocarpon Ait.) is one of only three widely-cultivated fruit crops native to North America- the other two are blueberry (Vaccinium spp.) and native grape (Vitis spp.). In terms of taxonomy, cranberries are in the core Ericales, an order for which genome sequence data are currently lacking. In addition, cranberries produce a host of important polyphenolic secondary compounds, some of which are beneficial to human health. Whereas next-generation sequencing technology is allowing the advancement of whole-genome sequencing, one major obstacle to the successful assembly from short-read sequence data of complex diploid (and higher ploidy) organisms is heterozygosity. Cranberry has the advantage of being diploid (2n = 2x = 24) and self-fertile. To minimize the issue of heterozygosity, we sequenced the genome of a fifth-generation inbred genotype (F ≥ 0.97) derived from five generations of selfing originating from the cultivar Ben Lear.ResultsThe genome size of V. macrocarpon has been estimated to be about 470 Mb. Genomic sequences were assembled into 229,745 scaffolds representing 420 Mbp (N50 = 4,237 bp) with 20X average coverage. The number of predicted genes was 36,364 and represents 17.7% of the assembled genome. Of the predicted genes, 30,090 were assigned to candidate genes based on homology. Genes supported by transcriptome data totaled 13,170 (36%).ConclusionsShotgun sequencing of the cranberry genome, with an average sequencing coverage of 20X, allowed efficient assembly and gene calling. The candidate genes identified represent a useful collection to further study important biochemical pathways and cellular processes and to use for marker development for breeding and the study of horticultural characteristics, such as disease resistance.


Gene | 2014

The American cranberry mitochondrial genome reveals the presence of selenocysteine (tRNA-Sec and SECIS) insertion machinery in land plants.

Diego Fajardo; Brandon Schlautman; Shawn A. Steffan; James J. Polashock; Nicholi Vorsa; Juan Zalapa

This is the first de novo assembly and annotation of a complete mitochondrial genome in the Ericales order from the American cranberry (Vaccinium macrocarpon Ait.). Moreover, only four complete Asterid mitochondrial genomes have been made publicly available. The cranberry mitochondrial genome was assembled and reconstructed from whole genome 454 Roche GS-FLX and Illumina shotgun sequences. Compared with other Asterids, the reconstruction of the genome revealed an average size mitochondrion (459,678 nt) with relatively little repetitive sequences and DNA of plastid origin. The complete mitochondrial genome of cranberry was annotated obtaining a total of 34 genes classified based on their putative function, plus three ribosomal RNAs, and 17 transfer RNAs. Maternal organellar cranberry inheritance was inferred by analyzing gene variation in the cranberry mitochondria and plastid genomes. The annotation of cranberry mitochondrial genome revealed the presence of two copies of tRNA-Sec and a selenocysteine insertion sequence (SECIS) element which were lost in plants during evolution. This is the first report of a land plant possessing selenocysteine insertion machinery at the sequence level.


Plant Molecular Biology Reporter | 2013

Discrimination of American Cranberry Cultivars and Assessment of Clonal Heterogeneity Using Microsatellite Markers

Diego Fajardo; J. Morales; Huayu Zhu; Shawn A. Steffan; Rebecca Harbut; Nahla V. Bassil; K. Hummer; James J. Polashock; Nicholi Vorsa; Juan Zalapa

Cranberries (Vaccinium macrocarpon Ait.) are an economically important fruit crop derived from a North American native species. We report the application of 12 simple sequence repeats (SSR) or microsatellite markers to assess the genetic diversity of cranberry cultivars. We studied 164 samples of 21 different cranberry cultivars, 11 experimental hybrids, and 6 representative accessions of wild species. Genetic cluster analysis, based on 117 SSR alleles, differentiated the major cranberry cultivars. However, some cranberry cultivar subclone variants and mislabeled samples were observed. Consensus genetic profiles identified the most likely clonal representatives of several important cranberry cultivars (e.g., “Ben Lear,” “Howes,” and “Stevens”). The markers were further used to confirm putative parents of several hybrid progenies. The long-term goal of our studies is to identify, preserve, and utilize unique genetic materials to breed improved cranberries. Attaining this goal will help growers maintain sustainability under changing economic and environmental conditions.

Collaboration


Dive into the Juan Zalapa's collaboration.

Top Co-Authors

Avatar

Brandon Schlautman

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Shawn A. Steffan

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Jack E. Staub

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Luis Diaz-Garcia

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James J. Polashock

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Johanne Brunet

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Diego Fajardo

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Hugo Cuevas

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge