Johannes C. Haag
Karolinska Institutet
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Johannes C. Haag.
Biomaterials | 2010
Silvia Baiguera; Phillip Jungebluth; Alan J. Burns; Carmelo Mavilia; Johannes C. Haag; Paolo De Coppi; Paolo Macchiarini
Two years ago we performed the first clinical successful transplantation of a fully tissue engineered trachea. Despite the clinically positive outcome, the graft production took almost 3 months, a not feasible period of time for patients with the need of an urgent transplantation. We have then improved decellularization process and herein, for the first time, we completely describe and characterize the obtainment of human tracheal bioactive supports. Histological and molecular biology analysis demonstrated that all cellular components and nuclear material were removed and quantitative PCR confirmed it. SEM analysis revealed that the decellularized matrices retained the hierarchical structures of native trachea, and biomechanical tests showed that decellularization approach did not led to any influence on tracheal morphological and mechanical properties. Moreover immunohistological staining showed the preservation of angiogenic factors and angiogenic assays demonstrated that acellular human tracheal scaffolds exert an in vitro chemo-active action and induce strong in vivo angiogenic response (CAM analysis). We are now able to obtained, in a short and clinically useful time (approximately 3 weeks), a bioengineered trachea that is structurally and mechanically similar to native trachea, which exert chemotactive and pro-angiogenic properties and which could be successfully used for clinical tissue engineered airway clinical replacements.
Biomaterials | 2012
Johannes C. Haag; Silvia Baiguera; Philipp Jungebluth; Daniel Barale; Costantino Del Gaudio; Francesca Castiglione; Alessandra Bianco; Camilla E. Comin; Domenico Ribatti; Paolo Macchiarini
In this study, the obtainment and characterization of decellularized rat tracheal grafts are described. The detergent-enzymatic method, already used to develop bioengineered pig and human trachea scaffolds, has been applied to rat tracheae in order to obtain airway grafts suitable to be used to improve our knowledge on the process of tissue-engineered airway transplantation and regeneration. The results demonstrated that, after 9 detergent-enzymatic cycles, almost complete decellularized tracheae, retaining the hierarchical and mechanical properties of the native tissues with strong in vivo angiogenic characteristics, could be obtained. Moreover, to improve the mechanical properties of decellularized tracheae, genipin is here considered as a naturally derived cross-linking agent. The results demonstrated that the treatment increased mechanical properties, in term of secant modulus, without neither altering the pro-angiogenic properties of decellularized airway matrices or eliciting an in vivo inflammatory response.
Biomaterials | 2012
Ylva Gustafsson; Johannes C. Haag; Philipp Jungebluth; Vanessa Lundin; Mei Ling Lim; Silvia Baiguera; Fatemeh Ajalloueian; Costantino Del Gaudio; Alessandra Bianco; Guido Moll; Sebastian Sjöqvist; Greg Lemon; Ana I. Teixeira; Paolo Macchiarini
In 2011, the first in-man successful transplantation of a tissue engineered trachea-bronchial graft, using a synthetic POSS-PCU nanocomposite construct seeded with autologous stem cells, was performed. To further improve this technology, we investigated the feasibility of using polymers with a three dimensional structure more closely mimicking the morphology and size scale of native extracellular matrix (ECM) fibers. We therefore investigated the in vitro biocompatibility of electrospun polyethylene terephthalate (PET) and polyurethane (PU) scaffolds, and determined the effects on cell attachment by conditioning the fibers with adhesion proteins. Rat mesenchymal stromal cells (MSCs) were seeded on either PET or PU fiber-layered culture plates coated with laminin, collagen I, fibronectin, poly-D-lysine or gelatin. Cell density, proliferation, viability, morphology and mRNA expression were evaluated. MSC cultures on PET and PU resulted in similar cell densities and amounts of proliferating cells, with retained MSC phenotype compared to data obtained from tissue culture plate cultures. Coating the scaffolds with adhesion proteins did not increase cell density or cell proliferation. Our data suggest that both PET and PU mats, matching the dimensions of ECM fibers, are biomimetic scaffolds and, because of their high surface area-to-volume provided by the electrospinning procedure, makes them per se suitable for cell attachment and proliferation without any additional coating.
Biomaterials | 2014
Fatemeh Ajalloueian; Mei Ling Lim; Greg Lemon; Johannes C. Haag; Ylva Gustafsson; Sebastian Sjöqvist; Antonio Beltrán-Rodríguez; Costantino Del Gaudio; Silvia Baiguera; Alessandra Bianco; Philipp Jungebluth; Paolo Macchiarini
The development of tracheal scaffolds fabricated based on electrospinning technique by applying different ratios of polyethylene terephthalate (PET) and polyurethane (PU) is introduced here. Prior to clinical implantation, evaluations of biomechanical and morphological properties, as well as biocompatibility and cell adhesion verifications are required and extensively performed on each scaffold type. However, the need for bioreactors and large cell numbers may delay the verification process during the early assessment phase. Hence, we investigated the feasibility of performing biocompatibility verification using static instead of dynamic culture. We performed bioreactor seeding on 3-dimensional (3-D) tracheal scaffolds (PET/PU and PET) and correlated the quantitative and qualitative results with 2-dimensional (2-D) sheets seeded under static conditions. We found that an 8-fold reduction for 2-D static seeding density can essentially provide validation on the qualitative and quantitative evaluations for 3-D scaffolds. In vitro studies revealed that there was notably better cell attachment on PET sheets/scaffolds than with the polyblend. However, the in vivo outcomes of cell seeded PET/PU and PET scaffolds in an orthotopic transplantation model in rodents were similar. They showed that both the scaffold types satisfied biocompatibility requirements and integrated well with the adjacent tissue without any observation of necrosis within 30 days of implantation.
Nature Communications | 2014
Sebastian Sjöqvist; Philipp Jungebluth; Mei Ling Lim; Johannes C. Haag; Ylva Gustafsson; Greg Lemon; Silvia Baiguera; Miguel Angel Burguillos; Costantino Del Gaudio; Antonio Beltrán Rodríguez; Alexander Sotnichenko; Karolina Kublickiene; Henrik Ullman; Heike Kielstein; Peter Damberg; Alessandra Bianco; Rainer L. Heuchel; Ying Zhao; Domenico Ribatti; Cristián Ibarra; Bertrand Joseph; Doris A. Taylor; Paolo Macchiarini
A tissue-engineered oesophageal scaffold could be very useful for the treatment of pediatric and adult patients with benign or malignant diseases such as carcinomas, trauma or congenital malformations. Here we decellularize rat oesophagi inside a perfusion bioreactor to create biocompatible biological rat scaffolds that mimic native architecture, resist mechanical stress and induce angiogenesis. Seeded allogeneic mesenchymal stromal cells spontaneously differentiate (proven by gene-, protein and functional evaluations) into epithelial- and muscle-like cells. The reseeded scaffolds are used to orthotopically replace the entire cervical oesophagus in immunocompetent rats. All animals survive the 14-day study period, with patent and functional grafts, and gain significantly more weight than sham-operated animals. Explanted grafts show regeneration of all the major cell and tissue components of the oesophagus including functional epithelium, muscle fibres, nerves and vasculature. We consider the presented tissue-engineered oesophageal scaffolds a significant step towards the clinical application of bioengineered oesophagi.
Cell Transplantation | 2011
Philipp Jungebluth; Mark Luedde; Elisabet Ferrer; Tom Luedde; Mihael Vucur; Victor I. Peinado; Tetsuhiko Go; Catharina Schreiber; Maximilian Von Richthofen; Augustinus Bader; Johannes C. Haag; Kai H. Darsow; Sebastian Bartel; Harald A. Lange; Dario Furlani; Gustav Steinhoff; Paolo Macchiarini
Because human lungs are unlikely to repair or regenerate beyond the cellular level, cell therapy has not previously been considered for chronic irreversible obstructive lung diseases. To explore whether cell therapy can restore lung function, we administered allogenic intratracheal mesenchymal stem cells (MSCs) in the trachea of rats with chronic thromboembolic pulmonary hypertension (CTEPH), a disease characterized by single or recurrent pulmonary thromboembolic obliteration and progressive pulmonary vascular remodeling. MSCs were retrieved only in high pressure-exposed lungs recruited via a homing stromal derived factor-1α/ CXCR4 pathway. After MSC administration, a marked and long-lasting improvement of all clinical parameters and a significant change of the proteome level were detected. Beside a variation of liver proteome, such as caspase-3, NF-κB, collagen1A1, and α-SMA, we also identified more than 300 resident and nonresident lung proteins [e.g., myosin light chain 3 (P16409) or mitochondrial ATP synthase subunit alpha (P15999)]. These results suggest that cell therapy restores lung function and the therapeutic effects of MSCs may be related to protein-based tissue reconstituting effects.
Biomaterials | 2014
Linda Helen Friedrich; Philipp Jungebluth; Sebastian Sjöqvist; Vanessa Lundin; Johannes C. Haag; Greg Lemon; Ylva Gustafsson; Fatemeh Ajalloueian; Alexander Sotnichenko; Heike Kielstein; Miguel Angel Burguillos; Bertrand Joseph; Ana I. Teixeira; Mei Ling Lim; Paolo Macchiarini
Aortic valve degeneration and dysfunction is one of the leading causes for morbidity and mortality. The conventional heart-valve prostheses have significant limitations with either life-long anticoagulation therapeutic associated bleeding complications (mechanical valves) or limited durability (biological valves). Tissue engineered valve replacement recently showed encouraging results, but the unpredictable outcome of tissue degeneration is likely associated to the extensive tissue processing methods. We believe that optimized decellularization procedures may provide aortic valve/root grafts improved durability. We present an improved/innovative decellularization approach using a detergent-enzymatic perfusion method, which is both quicker and has less exposure of matrix degenerating detergents, compared to previous protocols. The obtained graft was characterized for its architecture, extracellular matrix proteins, mechanical and immunological properties. We further analyzed the engineered aortic root for biocompatibility by cell adhesion and viability in vitro and heterotopic implantation in vivo. The developed decellularization protocol was substantially reduced in processing time whilst maintaining tissue integrity. Furthermore, the decellularized aortic root remained bioactive without eliciting any adverse immunological reaction. Cell adhesion and viability demonstrated the scaffolds biocompatibility. Our optimized decellularization protocol may be useful to develop the next generation of clinical valve prosthesis with a focus on improved mechanical properties and durability.
Current Opinion in Otolaryngology & Head and Neck Surgery | 2013
Johannes C. Haag; Philipp Jungebluth; Paolo Macchiarini
Purpose of reviewTo summarize the so far applied clinical methods of tracheal replacement, comparing pros and cons of conventional and tissue-engineered approaches. Recent findingsSeveral strategies have been most recently described to replace the trachea-like aortic homografts, allotransplantation, and tissue engineering. Allotransplantation requires lifelong immunosuppression and this may be ethically questioned being not a lifesaving procedure. Tissue-engineered tracheal transplantation has been clinically applied using biological or bioartificial tubular or bifurcated scaffolds reseeded with mesenchymal stromal cells, and bioactive molecules boosting regeneration and promoting neovascularization. SummaryTracheal tissue engineering may be a promising alternative to conventional allotransplantation in adults and children. Different methods have been developed and are currently under active clinical investigation, and await long-term results.
Mayo Clinic Proceedings | 2013
Mei Ling Lim; Philipp Jungebluth; Fatemeh Ajalloueian; Linda Helen Friedrich; Irina Gilevich; Karl-Henrik Grinnemo; Elena Gubareva; Johannes C. Haag; Greg Lemon; Sebastian Sjöqvist; Arthur Caplan; Paolo Macchiarini
Development of novel prognostic, diagnostic, and treatment options will provide major benefits for millions of patients with acute or chronic respiratory dysfunction, cardiac-related disorders, esophageal problems, or other diseases in the thorax. Allogeneic organ transplant is currently available. However, it remains a trap because of its dependency on a very limited supply of donated organs, which may be needed for both initial and subsequent transplants. Furthermore, it requires lifelong treatment with immunosuppressants, which are associated with adverse effects. Despite early clinical applications of bioengineered organs and tissues, routine implementation is still far off. For this review, we searched the PubMed, MEDLINE, and Ovid databases for the following keywords for each tissue or organ: tissue engineering, biological and synthetic scaffold/graft, acellular and decelluar(ized), reseeding, bioreactor, tissue replacement, and transplantation. We identified the current state-of-the-art practices in tissue engineering with a focus on advances during the past 5 years. We discuss advantages and disadvantages of biological and synthetic solutions and introduce novel strategies and technologies for the field. The ethical challenges of innovation in this area are also reviewed.
PLOS ONE | 2014
Mei Ling Lim; Brandon Nick Sern Ooi; Philipp Jungebluth; Sebastian Sjöqvist; Isabell Hultman; Greg Lemon; Ylva Gustafsson; Jurate Asmundsson; Silvia Baiguera; Iyadh Douagi; I. V. Gilevich; Alina Popova; Johannes C. Haag; Antonio Beltrán Rodríguez; Jianri Lim; Agne Liedén; Magnus Nordenskjöld; Evren Alici; Duncan Baker; Christian Unger; Tom Luedde; Ivan Vassiliev; José Inzunza; Lars Ährlund-Richter; Paolo Macchiarini
Stem cells contribute to regeneration of tissues and organs. Cells with stem cell-like properties have been identified in tumors from a variety of origins, but to our knowledge there are yet no reports on tumor-related stem cells in the human upper respiratory tract. In the present study, we show that a tracheal mucoepidermoid tumor biopsy obtained from a 6 year-old patient contained a subpopulation of cells with morphology, clonogenicity and surface markers that overlapped with bone marrow mesenchymal stromal cells (BM-MSCs). These cells, designated as MEi (mesenchymal stem cell-like mucoepidermoid tumor) cells, could be differentiated towards mesenchymal lineages both with and without induction, and formed spheroids in vitro. The MEi cells shared several multipotent characteristics with BM-MSCs. However, they displayed differences to BM-MSCs in growth kinectics and gene expression profiles relating to cancer pathways and tube development. Despite this, the MEi cells did not possess in vivo tumor-initiating capacity, as proven by the absence of growth in situ after localized injection in immunocompromised mice. Our results provide an initial characterization of benign tracheal cancer-derived niche cells. We believe that this report could be of importance to further understand tracheal cancer initiation and progression as well as therapeutic development.