Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Johannes Due-Hansen is active.

Publication


Featured researches published by Johannes Due-Hansen.


17. International Symposium on Molten Salts and Ionic Liquids - 218th ECS Meeting | 2010

Selective gas absorption by ionic liquids

Saravanamurugan Shunmugavel; So̸ren Kegnæs; Johannes Due-Hansen; Thorey Gretasdottir; Anders Riisager; Rasmus Fehrmann

Emission of acidic gases such as NOX and SOx and COx, which are produced by combustion of fossil fuels during, e.g. energy production in power plants, is a major concern in relation to atmospheric pollution and climate changes by the so-called green-house effect. Accordingly, these gases have to be effectively removed from flue gases. Presently this is mainly achieved by relatively energy intensive and resource demanding technologies via selective catalytic reduction (SCR) of NOX with ammonia, by gypsum formation after SO2 wetscrubbing while organic amines are being used as absorbents in CO2 scrubbers leading to concern about, e.g. intensive energy requirements for desorption, corrosion of steel pipes and pumps, CO2 absorption capacity and thermal decomposition of the amine. In this work, we demonstrate how ionic liquids can be tuned by design to perform as selective, high-capacity absorbents of environmentally problematic flue gases like, e.g. SO2 , NO and CO2 . Reversible absorption performance has been tested for several different ILs at different temperatures and flue gas compositions. The structures of ILs are well-ordered even in the liquid state with regular cavities which can host selected solute species depending on the IL ion composition. ILs can be tuned to absorb selected gas molecules making them promising materials for selective, reversible absorption of gaseous pollutants in, e.g. power plant flue gases and other exhaust or industrial offgases.[1,2] In the present work ionic liquids composed of imidazolium or guanidinium based cations like EMIM, BMIM, OMIM and TMGH and anions like acetate, sulphate, triflate and halogenides have been selected for absorption of SO2 and for the first time as far as we know also for NO . Task-specific ionic liquids have been developed[3] which are able to make a chemical bond between CO2 and amine-functionalized ILs at ambient conditions. It appears, however, that this type of bonding is too strong to make reversible absorption/desorption economic in technical scale. Therefore, we have set out to synthesize new ionic liquids containing alternative nitrogen-based functionalities which absorb CO2 readily but less strongly than corresponding amine-based ILs. It is anticipated that the new ionic liquids could improve both chemical and physical absorption of CO2 by proper choice of substituents while maintaining an acceptable enthalpy of absorption and desorption. Reversible absorption performance has been tested for several different ILs at different temperatures and flue gas compositions. Furthermore, different porous, high surface area carriers have been applied as supports for the ionic liquids to obtain Supported Ionic LiquidPhase (SILP) absorber materials.[4] The use of solid SILP absorbers with selected ILs were found to significantly improve the absorption capacity and sorption dynamics at low flue gas concentration, thus making the applicability of ILs viable in technical, continuous flow processes for flue gas cleaning. The results show that CO2 , NO and SO2 can be reversible and selective absorbed using different ILs and that Supported Ionic Liquid-Phase (SILP) absorbers are promising materials for industrial flue gas cleaning. Absorption / desorption dynamics can be tuned by temperatures, pressures and gas concentrations.


Journal of Catalysis | 2007

Vanadia-based SCR Catalysts Supported on Tungstated and Sulfated Zirconia: Influence of Doping with Potassium

Johannes Due-Hansen; Soghomon Boghosian; Arkady Kustov; Peter Fristrup; George Tsilomelekis; Kenny Ståhl; Claus H. Christensen; Rasmus Fehrmann


Catalysis Letters | 2009

Fe-BEA Zeolite Catalysts for NH3-SCR of NOx

Anne Mette Frey; Selcuk Mert; Johannes Due-Hansen; Rasmus Fehrmann; Claus H. Christensen


Applied Catalysis B-environmental | 2006

Tungstated zirconia as promising carrier for DeNOX catalysts with improved resistance towards alkali poisoning

Johannes Due-Hansen; Arkady Kustov; Søren Birk Rasmussen; Rasmus Fehrmann; Claus H. Christensen


Catalysis Today | 2012

Alternative alkali resistant deNOx catalysts

Siva Sankar Reddy Putluru; Steffen Buus Kristensen; Johannes Due-Hansen; Anders Riisager; Rasmus Fehrmann


Physical Chemistry Chemical Physics | 2012

Monitoring catalysts at work in their final form: spectroscopic investigations on a monolithic catalyst

Søren Birk Rasmussen; Miguel A. Bañares; Philippe Bazin; Johannes Due-Hansen; P. Avila; Marco Daturi


Applied Catalysis B-environmental | 2011

Redox behaviour of vanadium during hydrogen–oxygen exposure of the V2O5-WO3/TiO2 SCR catalyst at 250 °C

Johannes Due-Hansen; Søren Birk Rasmussen; Ewelina Mikolajska; Miguel A. Bañares; P. Avila; Rasmus Fehrmann


Applied Catalysis B-environmental | 2006

Characterization and regeneration of Pt-catalysts deactivated in municipal waste flue gas

Søren Birk Rasmussen; Arkady Kustov; Johannes Due-Hansen; Bernard Siret; Frank Tabaries; Rasmus Fehrmann


Catalysis Today | 2011

Multidisciplinary determination of the phase distribution for VOX–ZrO2–SO42−–sepiolite catalysts for NH3-SCR

Søren Birk Rasmussen; Johannes Due-Hansen; M. Villarroel; F.J. Gil-Llambias; Rasmus Fehrmann; P. Avila


Archive | 2007

Alkali resistant catalyst

Søren Birk Rasmussen; Arkady Kustov; Rasmus Fehmann; Johannes Due-Hansen

Collaboration


Dive into the Johannes Due-Hansen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anders Riisager

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claus H. Christensen

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

P. Avila

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne Mette Frey

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Arkady Kustov

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Arkadii Kustov

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Steffen Buus Kristensen

Technical University of Denmark

View shared research outputs
Researchain Logo
Decentralizing Knowledge