Johannes H. de Winde
Katholieke Universiteit Leuven
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Johannes H. de Winde.
Molecular Microbiology | 1999
Johan M. Thevelein; Johannes H. de Winde
The cAMP–protein kinase A (PKA) pathway in the yeast Saccharomyces cerevisiae plays a major role in the control of metabolism, stress resistance and proliferation, in particular in connection with the available nutrient conditions. Extensive information has been obtained on the core section of the pathway, i.e. Cdc25, Ras, adenylate cyclase, PKA, and on components interacting directly with this core section, such as the Ira proteins, Cap/Srv2 and the two cAMP phosphodiesterases. Recent work has now started to reveal upstream regulatory components and downstream targets of the pathway. A G‐protein‐coupled receptor system (Gpr1–Gpa2) acts upstream of adenylate cyclase and is required for glucose activation of cAMP synthesis in concert with a glucose phosphorylation‐dependent mechanism. Although a genuine signalling role for the Ras proteins remains unclear, they appear to mediate at least part of the potent stimulation of cAMP synthesis by intracellular acidification. Recently, several new targets of the PKA pathway have been discovered. These include the Msn2 and Msn4 transcription factors mediating part of the induction of STRE‐controlled genes by a variety of stress conditions, the Rim15 protein kinase involved in stationary phase induction of a similar set of genes and the Pde1 low‐affinity cAMP phosphodiesterase, which specifically controls agonist‐induced cAMP signalling. A major issue that remains to be resolved is the precise connection between the cAMP–PKA pathway and other nutrient‐regulated components involved in the control of growth and of phenotypic characteristics correlated with growth, such as the Sch9 and Yak1 protein kinases. Cln3 appears to play a crucial role in the connection between the availability of certain nutrients and Cdc28 kinase activity, but it remains to be clarified which nutrient‐controlled pathways control Cln3 levels.
Molecular Microbiology | 1999
L. Kraakman; Katleen Lemaire; Pingsheng Ma; Aloys Teunissen; M. Donaton; Patrick Van Dijck; Joris Winderickx; Johannes H. de Winde; Johan M. Thevelein
In the yeast Saccharomyces cerevisiae the accumulation of cAMP is controlled by an elaborate pathway. Only two triggers of the Ras adenylate cyclase pathway are known. Intracellular acidification induces a Ras‐mediated long‐lasting cAMP increase. Addition of glucose to cells grown on a non‐fermentable carbon source or to stationary‐phase cells triggers a transient burst in the intracellular cAMP level. This glucose‐induced cAMP signal is dependent on the G alpha‐protein Gpa2. We show that the G‐protein coupled receptor (GPCR) Gpr1 interacts with Gpa2 and is required for stimulation of cAMP synthesis by glucose. Gpr1 displays sequence homology to GPCRs of higher organisms. The absence of Gpr1 is rescued by the constitutively activated Gpa2Val‐132 allele. In addition, we isolated a mutant allele of GPR1, named fil2, in a screen for mutants deficient in glucose‐induced loss of heat resistance, which is consistent with its lack of glucose‐induced cAMP activation. Apparently, Gpr1 together with Gpa2 constitute a glucose‐sensing system for activation of the cAMP pathway. Deletion of Gpr1 and/or Gpa2 affected cAPK‐controlled features (levels of trehalose, glycogen, heat resistance, expression of STRE‐controlled genes and ribosomal protein genes) specifically during the transition to growth on glucose. Hence, an alternative glucose‐sensing system must signal glucose availability for the Sch9‐dependent pathway during growth on glucose. This appears to be the first example of a GPCR system activated by a nutrient in eukaryotic cells. Hence, a subfamily of GPCRs might be involved in nutrient sensing.
The EMBO Journal | 1998
Sonia Colombo; Pingsheng Ma; Liesbet Cauwenberg; Joris Winderickx; Marion Crauwels; Aloys Teunissen; David Nauwelaers; Johannes H. de Winde; Marie-Françoise Gorwa; Didier Colavizza; Johan M. Thevelein
Adenylate cyclase activity in Saccharomyces cerevisiae is dependent on Ras proteins. Both addition of glucose to glucose‐deprived (derepressed) cells and intracellular acidification trigger an increase in the cAMP level in vivo. We show that intracellular acidification, but not glucose, causes an increase in the GTP/GDP ratio on the Ras proteins independent of Cdc25 and Sdc25. Deletion of the GTPase‐activating proteins Ira1 and Ira2, or expression of the RAS2val19 allele, causes an enhanced GTP/GDP basal ratio and abolishes the intracellular acidification‐induced increase. In the ira1Δ ira2Δ strain, intracellular acidification still triggers a cAMP increase. Glucose also did not cause an increase in the GTP/GDP ratio in a strain with reduced feedback inhibition of cAMP synthesis. Further investigation indicated that feedback inhibition by cAPK on cAMP synthesis acts independently of changes in the GTP/GDP ratio on Ras. Stimulation by glucose was dependent on the Gα‐protein Gpa2, whose deletion confers the typical phenotype associated with a reduced cAMP level: higher heat resistance, a higher level of trehalose and glycogen and elevated expression of STRE‐controlled genes. However, the typical fluctuation in these characteristics during diauxic growth on glucose was still present. Overexpression of Ras2val19 inhibited both the acidification‐ and glucose‐induced cAMP increase even in a protein kinase A‐attenuated strain. Our results suggest that intracellular acidification stimulates cAMP synthesis in vivo at least through activation of the Ras proteins, while glucose acts through the Gpa2 protein. Interaction of Ras2val19 with adenylate cyclase apparently prevents its activation by both agonists.
Molecular Microbiology | 2000
Filip Rolland; Johannes H. de Winde; Katleen Lemaire; Eckhard Boles; Johan M. Thevelein; Joris Winderickx
In Saccharomyces cerevisiae, glucose activation of cAMP synthesis requires both the presence of the G‐protein‐coupled receptor (GPCR) system, Gpr1‐Gpa2, and uptake and phosphorylation of the sugar. In a hxt‐null strain that lacks all physiologically important glucose carriers, glucose transport as well as glucose‐induced cAMP signalling can be restored by constitutive expression of the galactose permease. Hence, the glucose transporters do not seem to have a regulatory function but are only required for glucose uptake. We established a system in which the GPCR‐dependent glucose‐sensing process is separated from the glucose phosphorylation process. It is based on the specific transport and hydrolysis of maltose providing intracellular glucose in the absence of glucose transport. Preaddition of a low concentration (0.7 mM) of maltose to derepressed hxt‐null cells and subsequent addition of glucose restored the glucose‐induced cAMP signalling, although there was no glucose uptake. Addition of a low concentration of maltose itself does not increase the cAMP level but enhances Glu6P and apparently fulfils the intracellular glucose phosphorylation requirement for activation of the cAMP pathway by extracellular glucose. This system enabled us to analyse the affinity and specificity of the GPCR system for fermentable sugars. Gpr1 displayed a very low affinity for glucose (apparent Ka = 75 mM) and responded specifically to extracellular α and βd‐glucose and sucrose, but not to fructose, mannose or any glucose analogues tested. The presence of the constitutively active Gpa2val132 allele in a wild‐type strain bypassed the requirement for Gpr1 and increased the low cAMP signal induced by fructose and by low glucose up to the same intensity as the high glucose signal. Therefore, the low cAMP increases observed with fructose and low glucose in wild‐type cells result only from the low sensitivity of the Gpr1‐Gpa2 system and not from the intracellular sugar kinase‐dependent process. In conclusion, we have shown that the two essential requirements for glucose‐induced activation of cAMP synthesis can be fulfilled separately: an extracellular glucose detection process dependent on Gpr1 and an intracellular sugar‐sensing process requiring the hexose kinases.
The EMBO Journal | 1999
Matthias Versele; Johannes H. de Winde; Johan M. Thevelein
We have characterized a novel member of the recently identified family of regulators of heterotrimeric G protein signalling (RGS) in the yeast Saccharomyces cerevisiae. The YOR107w/RGS2 gene was isolated as a multi‐copy suppressor of glucose‐induced loss of heat resistance in stationary phase cells. The N–terminal half of the Rgs2 protein consists of a typical RGS domain. Deletion and overexpression of Rgs2, respectively, enhances and reduces glucose‐induced accumulation of cAMP. Overexpression of RGS2 generates phenotypes consistent with low activity of cAMP‐dependent protein kinase A (PKA), such as enhanced accumulation of trehalose and glycogen, enhanced heat resistance and elevated expression of STRE‐controlled genes. Deletion of RGS2 causes opposite phenotypes. We demonstrate that Rgs2 functions as a negative regulator of glucose‐induced cAMP signalling through direct GTPase activation of the Gs‐α protein Gpa2. Rgs2 and Gpa2 constitute the second cognate RGS–G‐α protein pair identified in yeast, in addition to the mating pheromone pathway regulators Sst2 and Gpa1. Moreover, Rgs2 and Sst2 exert specific, non‐overlapping functions, and deletion mutants in Rgs2 and Sst2 are complemented to some extent by different mammalian RGS proteins.
Yeast | 1998
José Roberto Ernandes; Catherine De Meirsman; Filip Rolland; Joris Winderickx; Johannes H. de Winde; Rogélio Lopes Brandão; Johan M. Thevelein
In the yeast Saccharomyces cerevisiae a novel control exerted by TPS1 (GGS1FDP1BYP1CIF1GLC6TSS1)‐encoded trehalose‐6‐phosphate synthase, is essential for restriction of glucose influx into glycolysis apparently by inhibiting hexokinase activity in vivo. We show that up to 50‐fold overexpression of hexokinase does not noticeably affect growth on glucose or fructose in wild‐type cells. However, it causes higher levels of glucose‐6‐phosphate, fructose‐6‐phosphate and also faster accumulation of fructose‐1,6‐bisphosphate during the initiation of fermentation. The levels of ATP and Pi correlated inversely with the higher sugar phosphate levels. In the first minutes after glucose addition, the metabolite pattern observed was intermediate between those of the tps1Δ mutant and the wild‐type strain. Apparently, during the start‐up of fermentation hexokinase is more rate‐limiting in the first section of glycolysis than phosphofructokinase. We have developed a method to measure the free intracellular glucose level which is based on the simultaneous addition of d‐glucose and an equal concentration of radiolabelled l‐glucose. Since the latter is not transported, the free intracellular glucose level can be calculated as the difference between the total d‐glucose measured (intracellular+periplasmic/extracellular) and the total l‐glucose measured (periplasmic/extracellular). The intracellular glucose level rose in 5 min after addition of 100 mm‐glucose to 0·5–2 mm in the wild‐type strain, ±10 mm in a hxk1Δ hxk2Δ glk1Δ and 2–3 mm in a tps1Δ strain. In the strains overexpressing hexokinase PII the level of free intracellular glucose was not reduced. Overexpression of hexokinase PII never produced a strong effect on the rate of ethanol production and glucose consumption. Our results show that overexpression of hexokinase does not cause the same phenotype as deletion of Tps1. However, it mimics it transiently during the initiation of fermentation. Afterwards, the Tps1‐dependent control system is apparently able to restrict properly up to 50‐fold higher hexokinase activity.
Yeast | 1997
Marion Crauwels; Joris Winderickx; Johannes H. de Winde; Johan M. Thevelein
We have used RNA fingerprinting by the mRNA Differential Display technique to identify new genes in the yeast Saccharomyces cerevisiae, expression of which is controlled by specific nutrient conditions. mRNA was isolated from cells grown on glucose medium into exponential and stationary phase, and from cells starved for nitrogen on glucose‐containing medium. To avoid interference with the large number of glucose‐repressible genes, a glucose‐repression‐deficient strain was used. Twenty different sets of arbitrary primers chosen at random were used for PCR‐amplification of reverse transcriptase generated cDNAs, which resulted in six highly reproducible gene expression patterns. The validity of the approach was confirmed by sequencing PCR products of genes with known expression patterns, SUP44/RPS4, CTT1, SSA3, HSP30 and HSP104, and genes with related functions, TEF1 and TEF3, encoding translation elongation factors. In all cases the specificity of the responses was confirmed by Northern blot analysis. The results show that the PCR‐mapping method is highly useful for the identification of new genes expressed under specific conditions in the yeast S. cerevisiae
Enzyme and Microbial Technology | 2000
Johan M. Thevelein; Liesbet Cauwenberg; Sonia Colombo; Johannes H. de Winde; Monica Donation; Françoise Dumortier; L. Kraakman; Katleen Lemaire; Pingsheng Ma; David Nauwelaers; Filip Rolland; Aloys Teunissen; Patrick Van Dijck; Matthias Versele; Stefaan Wera; Joris Winderickx
FEBS Journal | 1996
Johannes H. de Winde; Marion Crauwels; Stefan Hohmann; Johan M. Thevelein; Joris Winderickx
Fems Yeast Research | 2001
Filip Rolland; Valeria Wanke; Liesbet Cauwenberg; Pingsheng Ma; Eckhard Boles; Marco Vanoni; Johannes H. de Winde; Johan M. Thevelein; Joris Winderickx