Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Johannes Kofler is active.

Publication


Featured researches published by Johannes Kofler.


Nature | 2012

Quantum teleportation over 143 kilometres using active feed-forward

Xiao-song Ma; T. M. Herbst; Thomas Scheidl; Daqing Wang; Sebastian Kropatschek; William Naylor; Bernhard Wittmann; Alexandra Mech; Johannes Kofler; Elena Anisimova; Vadim Makarov; Thomas Jennewein; Rupert Ursin; Anton Zeilinger

The quantum internet is predicted to be the next-generation information processing platform, promising secure communication and an exponential speed-up in distributed computation. The distribution of single qubits over large distances via quantum teleportation is a key ingredient for realizing such a global platform. By using quantum teleportation, unknown quantum states can be transferred over arbitrary distances to a party whose location is unknown. Since the first experimental demonstrations of quantum teleportation of independent external qubits, an internal qubit and squeezed states, researchers have progressively extended the communication distance. Usually this occurs without active feed-forward of the classical Bell-state measurement result, which is an essential ingredient in future applications such as communication between quantum computers. The benchmark for a global quantum internet is quantum teleportation of independent qubits over a free-space link whose attenuation corresponds to the path between a satellite and a ground station. Here we report such an experiment, using active feed-forward in real time. The experiment uses two free-space optical links, quantum and classical, over 143 kilometres between the two Canary Islands of La Palma and Tenerife. To achieve this, we combine advanced techniques involving a frequency-uncorrelated polarization-entangled photon pair source, ultra-low-noise single-photon detectors and entanglement-assisted clock synchronization. The average teleported state fidelity is well beyond the classical limit of two-thirds. Furthermore, we confirm the quality of the quantum teleportation procedure without feed-forward by complete quantum process tomography. Our experiment verifies the maturity and applicability of such technologies in real-world scenarios, in particular for future satellite-based quantum teleportation.Xiao-song Ma, 2 Thomas Herbst, Thomas Scheidl, Daqing Wang, Sebastian Kropatschek, William Naylor, Alexandra Mech, 1 Bernhard Wittmann, 1 Johannes Kofler, 1 Elena Anisimova, 6 Vadim Makarov, 6 Thomas Jennewein, Rupert Ursin, and Anton Zeilinger 2, 3 Institute for Quantum Optics and Quantum Information (IQOQI), Austrian Academy of Sciences, Boltzmanngasse 3, A-1090 Vienna, Austria Vienna Center for Quantum Science and Technology, Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria Max Planck Institute of Quantum Optics, Hans-Kopfermann-Str. 1, 85748 Garching/Munich, Germany Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada Department of Electronics and Telecommunications, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway (Dated: May 1, 2014)


Physical Review Letters | 2015

Significant-Loophole-Free Test of Bell's Theorem with Entangled Photons.

Marissa Giustina; Marijn A. M. Versteegh; Soeren Wengerowsky; Johannes Handsteiner; Armin Hochrainer; Kevin Phelan; Fabian Steinlechner; Johannes Kofler; Jan-Åke Larsson; Carlos Abellan; Waldimar Amaya; Valerio Pruneri; Morgan W. Mitchell; Joern Beyer; Thomas Gerrits; Adriana E. Lita; Lynden K. Shalm; Sae Woo Nam; Thomas Scheidl; Rupert Ursin; Bernhard Wittmann; Anton Zeilinger

Local realism is the worldview in which physical properties of objects exist independently of measurement and where physical influences cannot travel faster than the speed of light. Bells theorem states that this worldview is incompatible with the predictions of quantum mechanics, as is expressed in Bells inequalities. Previous experiments convincingly supported the quantum predictions. Yet, every experiment requires assumptions that provide loopholes for a local realist explanation. Here, we report a Bell test that closes the most significant of these loopholes simultaneously. Using a well-optimized source of entangled photons, rapid setting generation, and highly efficient superconducting detectors, we observe a violation of a Bell inequality with high statistical significance. The purely statistical probability of our results to occur under local realism does not exceed 3.74×10^{-31}, corresponding to an 11.5 standard deviation effect.


Nature | 2013

Bell violation using entangled photons without the fair-sampling assumption

Marissa Giustina; Alexandra Mech; Sven Ramelow; Bernhard Wittmann; Johannes Kofler; J. Beyer; Adriana E. Lita; Brice Calkins; Thomas Gerrits; Sae Woo Nam; Rupert Ursin; Anton Zeilinger

The violation of a Bell inequality is an experimental observation that forces the abandonment of a local realistic viewpoint—namely, one in which physical properties are (probabilistically) defined before and independently of measurement, and in which no physical influence can propagate faster than the speed of light. All such experimental violations require additional assumptions depending on their specific construction, making them vulnerable to so-called loopholes. Here we use entangled photons to violate a Bell inequality while closing the fair-sampling loophole, that is, without assuming that the sample of measured photons accurately represents the entire ensemble. To do this, we use the Eberhard form of Bell’s inequality, which is not vulnerable to the fair-sampling assumption and which allows a lower collection efficiency than other forms. Technical improvements of the photon source and high-efficiency transition-edge sensors were crucial for achieving a sufficiently high collection efficiency. Our experiment makes the photon the first physical system for which each of the main loopholes has been closed, albeit in different experiments.


Nature Physics | 2012

Experimental delayed-choice entanglement swapping

Xiao-song Ma; Stefan Zotter; Johannes Kofler; Rupert Ursin; Thomas Jennewein; Caslav Brukner; Anton Zeilinger

In 2000, Asher Peres put forward the paradoxical idea that entanglement could be produced after the entangled particles have been measured, even if they no longer exist. Researchers now experimentally demonstrate this idea using four photons.


Studies in History and Philosophy of Modern Physics | 2013

A snapshot of foundational attitudes toward quantum mechanics

Maximilian Schlosshauer; Johannes Kofler; Anton Zeilinger

Abstract Foundational investigations in quantum mechanics, both experimental and theoretical, gave birth to the field of quantum information science. Nevertheless, the foundations of quantum mechanics themselves remain hotly debated in the scientific community, and no consensus on essential questions has been reached. Here, we present the results of a poll carried out among 33 participants of a conference on the foundations of quantum mechanics. The participants completed a questionnaire containing 16 multiple-choice questions probing opinions on quantum-foundational issues. Participants included physicists, philosophers, and mathematicians. We describe our findings, identify commonly held views, and determine strong, medium, and weak correlations between the answers. Our study provides a unique snapshot of current views in the field of quantum foundations, as well as an analysis of the relationships between these views.


Physical Review Letters | 2007

Classical World Arising out of Quantum Physics under the Restriction of Coarse-Grained Measurements

Johannes Kofler; Caslav Brukner

Conceptually different from the decoherence program, we present a novel theoretical approach to macroscopic realism and classical physics within quantum theory. It focuses on the limits of observability of quantum effects of macroscopic objects, i.e., on the required precision of our measurement apparatuses such that quantum phenomena can still be observed. First, we demonstrate that for unrestricted measurement accuracy, no classical description is possible for arbitrarily large systems. Then we show for a certain time evolution that under coarse-grained measurements, not only macrorealism but even classical Newtonian laws emerge out of the Schrödinger equation and the projection postulate.


Europhysics News | 2009

Space-quest: experiments with quantum entanglement in space

Rupert Ursin; Thomas Jennewein; Johannes Kofler; Josep Perdigues; L. Cacciapuoti; C. J. de Matos; Markus Aspelmeyer; A. Valencia; Thomas Scheidl; Antonio Acín; Cesare Barbieri; G. Bianco; Caslav Brukner; J. Capmany; Sergio Cova; Dirk Giggenbach; Walter R. Leeb; Robert H. Hadfield; Raymond Laflamme; Norbert Lütkenhaus; G. J. Milburn; Momtchil Peev; Timothy C. Ralph; John Rarity; Renato Renner; E. Samain; Nikolaos Solomos; Wolfgang Tittel; Juan P. Torres; Morio Toyoshima

Quantumentanglement is, according to Erwin Schrodinger in 1935, the essence of quantumphysics. It inspires fundamental questions about the principles of nature. By testing the entanglement of particles,we are able to ask fundamental questions about realism and locality in nature. Local realismimposes certain constraints in statistical correlations ofmeasurements onmulti-particle systems. Quantummechanics, however, predicts that entangled systems havemuch stronger than classical correlations that are independent of the distance between the particles and are not explicablewith classical physics.


Physical Review A | 2013

Condition for macroscopic realism beyond the Leggett-Garg inequalities

Johannes Kofler; Caslav Brukner

In 1985, Leggett and Garg put forward the concept of macroscopic realism (macrorealism) and, in analogy to Bells theorem, derived a necessary condition in terms of inequalities, which are now known as the Leggett-Garg inequalities. In this paper, we discuss another necessary condition called no-signaling in time. It solely bases on comparing the probability distribution for a macrovariable at some time for the cases where previously a measurement has or has not been performed. Although the concept is analogous to the no-signaling condition in the case of Bell tests, it can be violated according to quantum mechanical predictions even in situations where no violation of Leggett-Garg inequalities is possible.


New Journal of Physics | 2009

Feasibility of 300 km quantum key distribution with entangled states

Thomas Scheidl; Rupert Ursin; Alessandro Fedrizzi; Sven Ramelow; Xiao-song Ma; Thomas Herbst; Robert Prevedel; Lothar Ratschbacher; Johannes Kofler; Thomas Jennewein; Anton Zeilinger

A significant limitation of practical quantum key distribution (QKD) setups is currently their limited operational range. It has recently been emphasized (Ma et al 2007 Phys. Rev. A 76 012307) that entanglement- based QKD systems can tolerate higher channel losses than systems based on weak coherent laser pulses (WCP), in particular, when the source is located symmetrically between the two communicating parties, Alice and Bob. In the work presented here, we experimentally study this important advantage by implementing different entanglement-based QKD setups on a 144km free-space link between the two Canary Islands of La Palma and Tenerife. We established three different configurations where the entangled photon source was placed at Alices location, asymmetrically between Alice and Bob and symmetrically in the middle between Alice and Bob, respectively. The resulting quantum channel attenuations of 35, 58 and 71dB, respectively, significantly exceed the limit for WCP systems (Ma et al 2007 Phys. Rev. A 76 012307). This confirms that QKD over distances of 300km and even more is feasible with entangled state sources placed in the middle between Alice and Bob.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Quantum erasure with causally disconnected choice

Xiao-song Ma; Johannes Kofler; Angie Qarry; Nuray Tetik; Thomas Scheidl; Rupert Ursin; Sven Ramelow; Thomas Herbst; Lothar Ratschbacher; Alessandro Fedrizzi; Thomas Jennewein; Anton Zeilinger

The counterintuitive features of quantum physics challenge many common-sense assumptions. In an interferometric quantum eraser experiment, one can actively choose whether or not to erase which-path information (a particle feature) of one quantum system and thus observe its wave feature via interference or not by performing a suitable measurement on a distant quantum system entangled with it. In all experiments performed to date, this choice took place either in the past or, in some delayed-choice arrangements, in the future of the interference. Thus, in principle, physical communications between choice and interference were not excluded. Here, we report a quantum eraser experiment in which, by enforcing Einstein locality, no such communication is possible. This is achieved by independent active choices, which are space-like separated from the interference. Our setup employs hybrid path-polarization entangled photon pairs, which are distributed over an optical fiber link of 55 m in one experiment, or over a free-space link of 144 km in another. No naive realistic picture is compatible with our results because whether a quantum could be seen as showing particle- or wave-like behavior would depend on a causally disconnected choice. It is therefore suggestive to abandon such pictures altogether.

Collaboration


Dive into the Johannes Kofler's collaboration.

Top Co-Authors

Avatar

Anton Zeilinger

Austrian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rupert Ursin

Austrian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Thomas Scheidl

Austrian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiao-song Ma

Austrian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marissa Giustina

Austrian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Tomasz Paterek

National University of Singapore

View shared research outputs
Researchain Logo
Decentralizing Knowledge