Johannes M.I.H. Gho
Utrecht University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Johannes M.I.H. Gho.
Stem Cells Translational Medicine | 2013
Stefan Koudstaal; Roberto Gaetani; Johannes M.I.H. Gho; Frebus J. van Slochteren; Joost P.G. Sluijter; Pieter A. Doevendans; Georgina M. Ellison; Steven A. J. Chamuleau
Acute myocardial infarction leads to irreversible loss of cardiac myocytes, thereby diminishing the pump function of the heart. As a result, the strenuous workload imposed on the remaining cardiac myocytes often gives rise to subsequent cell loss until the vicious circle ends in chronic heart failure (CHF). Thus, we are in need of a therapy that could ameliorate or even reverse the disease progression of CHF. Endogenous regeneration of the mammalian heart has been shown in the neonatal heart, and the discovery that it may still persist in adulthood sparked hope for novel cardioregenerative therapies. As the basis for cardiomyocyte renewal, multipotent cardiac stem/progenitor cells (CSCs) that reside in the heart have been shown to differentiate into cardiac myocytes, smooth muscle cells, and vascular endothelial cells. These CSCs do have the potential to actively regenerate the heart but clearly fail to do so after abundant and segmental loss of cells, such as what occurs with myocardial infarction. Therefore, it is vital to continue research for the most optimal therapy based on the use or in situ stimulation of these CSCs. In this review, we discuss the current status of the cardioregenerative field. In particular, we summarize the current knowledge of CSCs as the regenerative substrate in the adult heart and their use in preclinical and clinical studies to repair the injured myocardium.
Nature Communications | 2015
Ioannis Karakikes; Francesca Stillitano; Mathieu Nonnenmacher; Christos Tzimas; Despina Sanoudou; Vittavat Termglinchan; Chi Wing Kong; Stephanie N. Rushing; Jens Hansen; Delaine K. Ceholski; Fotis Kolokathis; Dimitrios Th. Kremastinos; Alexandros Katoulis; Lihuan Ren; Ninette Cohen; Johannes M.I.H. Gho; Dimitrios Tsiapras; Aryan Vink; Joseph C. Wu; Folkert W. Asselbergs; Ronald A. Li; Jean Sebastien Hulot; Evangelia G. Kranias; Roger J. Hajjar
A number of genetic mutations is associated with cardiomyopathies. A mutation in the coding region of the phospholamban (PLN) gene (R14del) is identified in families with hereditary heart failure. Heterozygous patients exhibit left ventricular dilation and ventricular arrhythmias. Here we generate induced pluripotent stem cells (iPSCs) from a patient harbouring the PLN R14del mutation and differentiate them into cardiomyocytes (iPSC-CMs). We find that the PLN R14del mutation induces Ca2+ handling abnormalities, electrical instability, abnormal cytoplasmic distribution of PLN protein and increases expression of molecular markers of cardiac hypertrophy in iPSC-CMs. Gene correction using transcription activator-like effector nucleases (TALENs) ameliorates the R14del-associated disease phenotypes in iPSC-CMs. In addition, we show that knocking down the endogenous PLN and simultaneously expressing a codon-optimized PLN gene reverses the disease phenotype in vitro. Our findings offer novel strategies for targeting the pathogenic mutations associated with cardiomyopathies.
Journal of Cardiac Failure | 2013
Johannes M.I.H. Gho; Gijs Kummeling; Stefan Koudstaal; Pieter A. Doevendans; Folkert W. Asselbergs; Steven A. J. Chamuleau
BACKGROUND Dilated cardiomyopathy (DCM) is the most common form of nonischemic cardiomyopathy worldwide and can lead to sudden cardiac death and heart failure. Despite ongoing advances made in the treatment of DCM, improvement of outcome remains problematic. Stem cell therapy has been extensively studied in preclinical and clinical models of ischemic heart disease, showing potential benefit. DCM is associated with a major health burden, and few studies have been performed on cell therapy for DCM. In this systematic review we aimed to provide an overview of preclinical and clinical studies performed on cell therapy for DCM. METHODS AND RESULTS A systematic search, critical appraisal, and summarized outcomes are presented. In total, 29 preclinical and 15 clinical studies were included. Methodologic quality of reported studies in general was low based on the Centre for Evidence Based Medicine, Oxford University, criteria. A large heterogeneity in inclusion criteria, procedural characteristics, and outcome measures was noted. The majority of studies showed a significant increase in left ventricular ejection fraction after cell therapy during follow-up. CONCLUSIONS Stem cell therapy has shown moderate but significant effects in clinical trials for ischemic heart disease, but it remains to be determined if we can extrapolate these results to DCM patients. There is a need for methodologically sound studies to elucidate underlying mechanisms and translate those into improved therapy for clinical practice. To validate safety and efficacy of cell therapy for DCM, adequate randomized (placebo) controlled trials using different strategies are mandatory.
Journal of Magnetic Resonance Imaging | 2015
Joep W. M. van Oorschot; Johannes M.I.H. Gho; Gerardus P.J. van Hout; Martijn Froeling; Imo E. Hoefer; Pieter A. Doevendans; Peter R. Luijten; Steven A. J. Chamuleau; Jaco J.M. Zwanenburg
The aim of this review is to provide an overview of detection of cardiac fibrosis with MRI using current standards and novel endogenous MRI techniques. Assessment of cardiac fibrosis is important for diagnosis, prediction of prognosis and follow‐up after therapy. During the past years, progress has been made in fibrosis detection using MRI. Cardiac infarct size can be assessed noninvasively with late gadolinium enhancement. Several methods for fibrosis detection using endogenous contrast have been developed, such as native T1‐mapping, T1ρ‐mapping, Magnetization transfer imaging, and T2*‐mapping. Each of these methods will be described, providing the basic methodology, showing potential applications from applied studies, and discussing the potential and challenges or pitfalls. We will also identify future steps and developments that are needed for bringing these methods to the clinical practice. J. Magn. Reson. Imaging 2015;41:1181–1189.
Journal of Visualized Experiments | 2014
Stefan Koudstaal; Johannes M.I.H. Gho; Gerardus P.J. van Hout; Marlijn S. Jansen; Paul F. Gründeman; Gerard Pasterkamp; Pieter A. Doevendans; Imo E. Hoefer; Steven A. J. Chamuleau
Introduction of newly discovered cardiovascular therapeutics into first-in-man trials depends on a strictly regulated ethical and legal roadmap. One important prerequisite is a good understanding of all safety and efficacy aspects obtained in a large animal model that validly reflect the human scenario of myocardial infarction (MI). Pigs are widely used in this regard since their cardiac size, hemodynamics, and coronary anatomy are close to that of humans. Here, we present an effective protocol for using the porcine MI model using a closed-chest coronary balloon occlusion of the left anterior descending artery (LAD), followed by reperfusion. This approach is based on 90 min of myocardial ischemia, inducing large left ventricle infarction of the anterior, septal and inferoseptal walls. Furthermore, we present protocols for various measures of outcome that provide a wide range of information on the heart, such as cardiac systolic and diastolic function, hemodynamics, coronary flow velocity, microvascular resistance, and infarct size. This protocol can be easily tailored to meet study specific requirements for the validation of novel cardioregenerative biologics at different stages (i.e. directly after the acute ischemic insult, in the subacute setting or even in the chronic MI once scar formation has been completed). This model therefore provides a useful translational tool to study MI, subsequent adverse remodeling, and the potential of novel cardioregenerative agents.
PLOS ONE | 2014
Johannes M.I.H. Gho; René van Es; Nikolas Stathonikos; Magdalena Harakalova; Wouter P. te Rijdt; Albert J. H. Suurmeijer; Jeroen F. van der Heijden; Nicolaas de Jonge; Steven A. J. Chamuleau; Roel A. de Weger; Folkert W. Asselbergs; Aryan Vink
Myocardial fibrosis can lead to heart failure and act as a substrate for cardiac arrhythmias. In dilated cardiomyopathy diffuse interstitial reactive fibrosis can be observed, whereas arrhythmogenic cardiomyopathy is characterized by fibrofatty replacement in predominantly the right ventricle. The p.Arg14del mutation in the phospholamban (PLN) gene has been associated with dilated cardiomyopathy and recently also with arrhythmogenic cardiomyopathy. Aim of the present study is to determine the exact pattern of fibrosis and fatty replacement in PLN p.Arg14del mutation positive patients, with a novel method for high resolution systematic digital histological quantification of fibrosis and fatty tissue in cardiac tissue. Transversal mid-ventricular slices (n = 8) from whole hearts were collected from patients with the PLN p.Arg14del mutation (age 48±16 years; 4 (50%) male). An in-house developed open source MATLAB script was used for digital analysis of Massons trichrome stained slides (http://sourceforge.net/projects/fibroquant/). Slides were divided into trabecular, inner and outer compact myocardium. Per region the percentage of connective tissue, cardiomyocytes and fatty tissue was quantified. In PLN p.Arg14del mutation associated cardiomyopathy, myocardial fibrosis is predominantly present in the left posterolateral wall and to a lesser extent in the right ventricular wall, whereas fatty changes are more pronounced in the right ventricular wall. No difference in distribution pattern of fibrosis and adipocytes was observed between patients with a clinical predominantly dilated and arrhythmogenic cardiomyopathy phenotype. In the future, this novel method for quantifying fibrosis and fatty tissue can be used to assess cardiac fibrosis and fatty tissue in animal models and a broad range of human cardiomyopathies.
European Journal of Heart Failure | 2017
Stefan Koudstaal; Mar Pujades-Rodriguez; Spiros Denaxas; Johannes M.I.H. Gho; Anoop Dinesh Shah; Ning Yu; Riyaz S. Patel; Chris P Gale; Arno W. Hoes; John G.F. Cleland; Folkert W. Asselbergs; Harry Hemingway
The prognosis of patients hospitalized for worsening heart failure (HF) is well described, but not that of patients managed solely in non‐acute settings such as primary care or secondary outpatient care. We assessed the distribution of HF across levels of healthcare, and assessed the prognostic differences for patients with HF either recorded in primary care (including secondary outpatient care) (PC), hospital admissions alone, or known in both contexts.
PLOS ONE | 2015
Johannes M.I.H. Gho; Stefan Koudstaal; Gerardus P.J. van Hout; Peter Paul Zwetsloot; Joep W. M. van Oorschot; Esther C.M. van Eeuwijk; Tim Leiner; Imo E. Hoefer; Marie-José Goumans; Pieter A. Doevendans; Joost P.G. Sluijter; Steven A. J. Chamuleau
Background Recently cardiomyocyte progenitor cells (CMPCs) were successfully isolated from fetal and adult human hearts. Direct intramyocardial injection of human CMPCs (hCMPCs) in experimental mouse models of acute myocardial infarction significantly improved cardiac function compared to controls. Aim Here, our aim was to investigate whether xenotransplantation via intracoronary infusion of fetal hCMPCs in a pig model of chronic myocardial infarction is safe and efficacious, in view of translation purposes. Methods & Results We performed a randomized, blinded, placebo controlled trial. Four weeks after ischemia/reperfusion injury by 90 minutes of percutaneous left anterior descending artery occlusion, pigs (n = 16, 68.5 ± 5.4 kg) received intracoronary infusion of 10 million fetal hCMPCs or placebo. All animals were immunosuppressed by cyclosporin (CsA). Four weeks after infusion, endpoint analysis by MRI displayed no difference in left ventricular ejection fraction, left ventricular end diastolic and left ventricular end systolic volumes between both groups. Serial pressure volume (PV-)loop and echocardiography showed no differences in functional parameters between groups at any timepoint. Infarct size at follow-up, measured by late gadolinium enhancement MRI showed no difference between groups. Intracoronary pressure and flow measurements showed no signs of coronary obstruction 30 minutes after cell infusion. No premature death occurred in cell treated animals. Conclusion Xenotransplantation via intracoronary infusion of hCMPCs is feasible and safe, but not associated with improved left ventricular performance and infarct size compared to placebo in a porcine model of chronic myocardial infarction.
Physiological Reports | 2014
Gerardus P.J. van Hout; Johannes M.I.H. Gho; Pieter A. Doevendans; Wouter W. van Solinge; Gerard Pasterkamp; Steven A. J. Chamuleau; Imo E. Hoefer
A novel admittance‐based pressure–volume system (AS) has recently been developed and introduced. Thus far, the new technique has been validated predominantly in small animals. In large animals it has only been compared to three‐dimensional echocardiography (3DE) where the AS showed to overestimate left ventricular (LV) volumes. To fully determine the accuracy of this device, we compared the AS with gold standard cardiac magnetic resonance imaging (CMRI) in a porcine model of chronic myocardial infarction (MI). Fourteen pigs were subjected to 90 min closed chest balloon occlusion of the left anterior descending artery. After 8 weeks of follow up, pigs were consecutively subjected to LV volume measurements by the AS, CMRI, and 3DE under general anesthesia. The AS overestimated end diastolic volume (EDV; +20.9 ± 30.6 mL, P = 0.024) and end systolic volume (ESV; +17.7 ± 29.4 mL, P = 0.042) but not ejection fraction (EF; +2.46 ± 6.16%, P = NS) compared to CMRI. Good correlations of EDV (R = 0.626, P = 0.017) and EF (R = 0.704, P = 0.005) between the AS and CMRI were observed. EF measured by the AS and 3DE also correlated significantly (R = 0.624, P = 0.030). After subjection of pigs to MI, the AS very moderately overestimates LV volumes and shows accurate measurements for EF compared to CMRI. This makes the AS a useful tool to determine cardiac function and dynamic changes in large animal models of cardiac disease.
BMJ Open | 2018
Johannes M.I.H. Gho; Amand F. Schmidt; Laura Pasea; Stefan Koudstaal; Mar Pujades-Rodriguez; Spiros Denaxas; Anoop Dinesh Shah; Riyaz S. Patel; Chris P Gale; Arno W. Hoes; John G.F. Cleland; Harry Hemingway; Folkert W. Asselbergs
Objectives To investigate the incidence and determinants of heart failure (HF) following a myocardial infarction (MI) in a contemporary cohort of patients with MI using routinely collected primary and hospital care electronic health records (EHRs). Methods Data were used from the CALIBER programme, linking EHRs in England from primary care, hospital admissions, an MI registry and mortality data. Subjects were eligible if they were 18 years or older, did not have a history of HF and survived a first MI. Factors associated with time to HF were examined using Cox proportional hazard models. Results Of the 24 479 patients with MI, 5775 (23.6%) developed HF during a median follow-up of 3.7 years (incidence rate per 1000 person-years: 63.8, 95% CI 62.2 to 65.5). Baseline characteristics significantly associated with developing HF were: atrial fibrillation (HR 1.62, 95% CI 1.51 to 1.75), age (per 10 years increase: 1.45, 1.41 to 1.49), diabetes (1.45, 1.35 to 1.56), peripheral arterial disease (1.38, 1.26 to 1.51), chronic obstructive pulmonary disease (1.28, 1.17 to 1.40), greater socioeconomic deprivation (5th vs 1st quintile: 1.27, 1.13 to 1.41), ST-segment elevation MI at presentation (1.19, 1.11 to 1.27) and hypertension (1.16, 1.09 to 1.23). Results were robust to various sensitivity analyses such as competing risk analysis and multiple imputation. Conclusion In England, one in four survivors of a first MI develop HF within 4 years. This contemporary study demonstrates that patients with MI are at considerable risk of HF. Baseline patient characteristics associated with time until HF were identified, which may be used to target preventive strategies.