Johannes P. Werner
Bjerknes Centre for Climate Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Johannes P. Werner.
Environmental Research Letters | 2016
Jürg Luterbacher; Johannes P. Werner; Jason E. Smerdon; Laura Fernández-Donado; Fidel González-Rouco; David Barriopedro; Fredrik Charpentier Ljungqvist; Ulf Büntgen; E. Zorita; S. Wagner; Jan Esper; Danny McCarroll; Andrea Toreti; David Frank; Johann H. Jungclaus; Mariano Barriendos; Chiara Bertolin; Oliver Bothe; Rudolf Brázdil; Dario Camuffo; Petr Dobrovolný; Mary Gagen; E. García-Bustamante; Quansheng Ge; Juan J. Gomez-Navarro; Joël Guiot; Zhixin Hao; Gabi Hegerl; Karin Holmgren; V.V. Klimenko
The spatial context is criticalwhen assessing present-day climate anomalies, attributing them to potential forcings and making statements regarding their frequency and severity in a long-term perspective. Recent international initiatives have expanded the number of high-quality proxy-records and developed new statistical reconstruction methods. These advances allow more rigorous regional past temperature reconstructions and, in turn, the possibility of evaluating climate models on policy-relevant, spatiotemporal scales. Here we provide a new proxy-based, annually-resolved, spatial reconstruction of the European summer (June-August) temperature fields back to 755 CE based on Bayesian hierarchical modelling (BHM), together with estimates of the European mean temperature variation since 138 BCE based on BHM and composite-plus-scaling (CPS). Our reconstructions compare well with independent instrumental and proxy-based temperature estimates, but suggest a larger amplitude in summer temperature variability than previously reported. Both CPS and BHM reconstructions indicate that the mean 20th century European summer temperature was not significantly different from some earlier centuries, including the 1st, 2nd, 8th and 10th centuries CE. The 1st century (in BHM also the 10th century) may even have been slightly warmer than the 20th century, but the difference is not statistically significant. Comparing each 50 yr period with the 1951-2000 period reveals a similar pattern. Recent summers, however, have been unusually warm in the context of the last two millennia and there are no 30 yr periods in either reconstruction that exceed the mean average European summer temperature of the last 3 decades (1986-2015 CE). A comparison with an ensemble of climate model simulations suggests that the reconstructed European summer temperature variability over the period 850-2000 CE reflects changes in both internal variability and external forcing on multi-decadal time-scales. For pan-European temperatures we find slightly better agreement between the reconstruction and the model simulations with high-end estimates for total solar irradiance. Temperature differences between the medieval period, the recent period and the Little Ice Age are larger in the reconstructions than the simulations. This may indicate inflated variability of the reconstructions, a lack of sensitivity and processes to changes in external forcing on the simulated European climate and/or an underestimation of internal variability on centennial and longer time scales.
The Climate of the Mediterranean Region | 2012
Jürg Luterbacher; Ricardo García-Herrera; Sena Akçer-Ön; Rob Allan; Maria-Carmen Alvarez-Castro; Gerardo Benito; Jonathan Booth; Ulf Büntgen; Namik Cagatay; Daniele Colombaroli; Basil A. S. Davis; Jan Esper; Thomas Felis; Dominik Fleitmann; David Frank; David Gallego; E. García-Bustamante; Ruediger Glaser; Fidel González-Rouco; Hugues Goosse; Thorsten Kiefer; Mark G. Macklin; Sturt W. Manning; Paolo Montagna; Louise Newman; Mitchell J. Power; Volker Rath; Pedro Ribera; Dirk Riemann; Neil Roberts
The integration of climate information from instrumental data and documentary and natural archives; evidence of past human activity derived from historical, paleoecological, and archaeological records; and new climate modeling techniques promises major breakthroughs for our understanding of climate sensitivity, ecological processes, environmental response, and human impact. In this chapter, we review the availability and potential of instrumental data, less well-known written records, and terrestrial and marine natural proxy archives for climate in the Mediterranean region over the last 2000 years. We highlight the need to integrate these different proxy archives and the importance for multiproxy studies of disentangling complex relationships among climate, sea-level changes, fire, vegetation, and forests, as well as land use and other human impacts. Focusing on dating uncertainties, we address seasonality effects and other uncertainties in the different proxy records. We describe known and anticipated challenges posed by integrating multiple diverse proxies in high-resolution climate-variation reconstructions, including proxy limitations to robust reconstruction of the natural range of climate variability and problems specific to temporal scales from interannual to multicentennial. Finally, we highlight the potential of paleo models to contribute to climate reconstructions in the Mediterranean, by narrowing the range of climate-sensitivity estimates and by assimilating multiple proxies.
Climatic Change | 2014
Oliver Wetter; Christian Pfister; Johannes P. Werner; Eduardo Zorita; Sebastian Wagner; Sonia I. Seneviratne; Jürgen Herget; Uwe Grünewald; Jürg Luterbacher; Maria João Alcoforado; Mariano Barriendos; Ursula Bieber; Rudolf Brázdil; Karl H. Burmeister; Chantal Camenisch; Antonio Contino; Petr Dobrovolný; Rüdiger Glaser; Iso Himmelsbach; Andrea Kiss; Oldřich Kotyza; Thomas Labbé; Danuta Limanówka; Laurent Litzenburger; Øyvind Nordl; Kathleen Pribyl; Dag Retsö; Dirk Riemann; Christian Rohr; Werner Siegfried
The heat waves of 2003 in Western Europe and 2010 in Russia, commonly labelled as rare climatic anomalies outside of previous experience, are often taken as harbingers of more frequent extremes in the global warming-influenced future. However, a recent reconstruction of spring–summer temperatures for WE resulted in the likelihood of significantly higher temperatures in 1540. In order to check the plausibility of this result we investigated the severity of the 1540 drought by putting forward the argument of the known soil desiccation-temperature feedback. Based on more than 300 first-hand documentary weather report sources originating from an area of 2 to 3 million km2, we show that Europe was affected by an unprecedented 11-month-long Megadrought. The estimated number of precipitation days and precipitation amount for Central and Western Europe in 1540 is significantly lower than the 100-year minima of the instrumental measurement period for spring, summer and autumn. This result is supported by independent documentary evidence about extremely low river flows and Europe-wide wild-, forest- and settlement fires. We found that an event of this severity cannot be simulated by state-of-the-art climate models.
Scientific Data | 2017
Julien Emile-Geay; Nicholas P. McKay; Darrell S. Kaufman; Lucien von Gunten; Jianghao Wang; Nerilie J. Abram; Jason A. Addison; Mark A. J. Curran; Michael N. Evans; Benjamin J. Henley; Zhixin Hao; Belen Martrat; Helen V. McGregor; Raphael Neukom; Gregory T. Pederson; Barbara Stenni; Kaustubh Thirumalai; Johannes P. Werner; Chenxi Xu; Dmitry Divine; Bronwyn C. Dixon; Joëlle Gergis; Ignacio A. Mundo; Takeshi Nakatsuka; Steven J. Phipps; Cody C. Routson; Eric J. Steig; Jessica E. Tierney; Jonathan J. Tyler; Kathryn Allen
Reproducible climate reconstructions of the Common Era (1 CE to present) are key to placing industrial-era warming into the context of natural climatic variability. Here we present a community-sourced database of temperature-sensitive proxy records from the PAGES2k initiative. The database gathers 692 records from 648 locations, including all continental regions and major ocean basins. The records are from trees, ice, sediment, corals, speleothems, documentary evidence, and other archives. They range in length from 50 to 2000 years, with a median of 547 years, while temporal resolution ranges from biweekly to centennial. Nearly half of the proxy time series are significantly correlated with HadCRUT4.2 surface temperature over the period 1850–2014. Global temperature composites show a remarkable degree of coherence between high- and low-resolution archives, with broadly similar patterns across archive types, terrestrial versus marine locations, and screening criteria. The database is suited to investigations of global and regional temperature variability over the Common Era, and is shared in the Linked Paleo Data (LiPD) format, including serializations in Matlab, R and Python.
Nature Geoscience | 2013
Moinuddin Ahmed; Brendan M. Buckley; M. Braida; H.P. Borgaonkar; Asfawossen Asrat; Edward R. Cook; Ulf Büntgen; Brian M. Chase; Duncan A. Christie; Mark A. J. Curran; Henry F. Diaz; Jan Esper; Ze-Xin Fan; Narayan P. Gaire; Quansheng Ge; Joëlle Gergis; J. Fidel Gonzalez-Rouco; Hugues Goosse; Stefan W. Grab; Nicholas E. Graham; Rochelle Graham; Martin Grosjean; Sami Hanhijärvi; Darrell S. Kaufman; Thorsten Kiefer; Katsuhiko Kimura; Atte Korhola; Paul J. Krusic; Antonio Lara; Anne-Marie Lézine
Past global climate changes had strong regional expression. To elucidate their spatio-temporal pattern, we reconstructed past temperatures for seven continental-scale regions during the past one to two millennia. The most coherent feature in nearly all of the regional temperature reconstructions is a long-term cooling trend, which ended late in the nineteenth century. At multi-decadal to centennial scales, temperature variability shows distinctly different regional patterns, with more similarity within each hemisphere than between them. There were no globally synchronous multi-decadal warm or cold intervals that define a worldwide Medieval Warm Period or Little Ice Age, but all reconstructions show generally cold conditions between ad 1580 and 1880, punctuated in some regions by warm decades during the eighteenth century. The transition to these colder conditions occurred earlier in the Arctic, Europe and Asia than in North America or the Southern Hemisphere regions. Recent warming reversed the long-term cooling; during the period ad 1971–2000, the area-weighted average reconstructed temperature was higher than any other time in nearly 1,400 years.
Environmental Research Letters | 2015
Huan Zhang; Naiming Yuan; Jan Esper; Johannes P. Werner; Elena Xoplaki; Ulf Büntgen; Kerstin Treydte; Jürg Luterbacher
Long term memory (LTM) scaling behavior in worldwide tree-ring proxies and subsequent climate reconstructions is analyzed for and compared with the memory structure inherent to instrumental temperature and precipitation data. Detrended fluctuation analysis is employed to detect LTM, and its scaling exponent α is used to evaluate LTM. The results show that temperature and precipitation reconstructions based on ring width measurements (mean ) contain more memory than records based on maximum latewood density (mean ). Both exceed the memory inherent to regional instrumental data ( for temperature, for precipitation) in the time scales ranging from 1 year up to 50 years. We compare memory-free () pseudo-instrumental precipitation data with pseudo-reconstructed precipitation data with LTM (), and demonstrate the biasing influences of LTM on climate reconstructions. We call for attention to statistical analysis with regard to the variability of proxy-based chronologies or reconstructions, particularly with respect to the contained (i) trends, (ii) past warm/cold period and wet/dry periods; and (iii) extreme events.
Climatic Change | 2015
Christian Pfister; Oliver Wetter; Rudolf Brázdil; Petr Dobrovolný; Rüdiger Glaser; Jürg Luterbacher; Sonia I. Seneviratne; Eduardo Zorita; Maria João Alcoforado; Mariano Barriendos; Ursula Bieber; Karl H. Burmeister; Chantal Camenisch; Antonio Contino; Uwe Grünewald; Jürgen Herget; Iso Himmelsbach; Thomas Labbé; Danuta Limanówka; Laurent Litzenburger; Andrea Kiss; Oldřich Kotyza; Øyvind Nordli; Kathleen Pribyl; Dag Retsö; Dirk Riemann; Christian Rohr; Werner Siegfried; Jean-Laurent Spring; Johan Söderberg
Buntgen et al. (2015; hereinafter B15) present the result of new research which question the results of Wetter et al. 2014, (hereinafter W14) and Wetter et al. (2013, hereinafter W13)regarding European climate in 1540. B15 conclude from tree-ring evidence that the results based on documentary data of W14 probably overstated the intensity and duration of the 1540 drought event. W14 termed it Megadrought because of its extreme duration and spatial extent compared to other drought events in central Europe, although they note that the term is generally used for decadal rather than for single-year droughts (Seneviratne et al. 2012). We take the opportunity to recall the following issues. Firstly, when dealing with drought the complexity of this phenomenon should be kept in mind. Meteorological drought defined as a large negative precipitation anomaly during a certain period can trigger agricultural, hydrological, groundwater and socioeconomic droughts. Lloyd-Hughes (2013] and references cited herein) concluded that any workable objective definition of drought does not exist. To quantify droughts, various indices based on precipitation, temperature and evapotranspiration are used such as the Standardized Precipitation Index (SPI), Standardized Precipitation Evapotranspiration Index (SPEI), Z-index and PDSI. Their calculation depends on different periods (seasons, combination of months) and so different indices may classify the same drought episode differently (e.g. Brazdil et al.2014).
Frontiers of Earth Science in China | 2018
Lea T. Oppedal; Jostein Bakke; Øyvind Paasche; Johannes P. Werner; Willem G.M. van der Bilt
A 7000 year-long cirque glacier reconstruction from South Georgia, based on detailed analysis of fine-grained sediments deposited downstream in a bog and a lake, suggests continued presence during most of the Holocene. Glacier activity is inferred from various sedimentary properties including magnetic susceptibility (MS), dry bulk density (DBD), loss-on-ignition (LOI) and geochemical elements (XRF), and tallied to a set of terminal moraines. The two independently dated sediment records document concurring events of enhanced glacigenic sediment influx to the bog and lake, whereas the upstream moraines afford the opportunity to calculate past Equilibrium Line Altitudes (ELA) which has varied in the order of 70 m altitude. Combined, the records provide new evidence of cirque glacier fluctuations on South Georgia. Based on the onset of peat formation, the study site was deglaciated prior to 9900±250 years ago when Neumayer tidewater glacier retreated up-fjord. Changes in the lake and bog sediment properties indicate that the cirque glacier was close to its maximum Holocene extent between 7200±400 and 4800±200 cal BP, 2700±150 and 2000±200 cal BP, 500±150-300±100 cal BP, and in the 20th century (likely 1930s). The glacier fluctuations are largely in-phase with reconstructed Patagonian glaciers, implying that they respond to centennial climate variability possibly connected to corresponding modulations of the Southern Westerly Winds.
Scientific Data | 2017
Nerilie J. Abram; Nalan Koc; Chenxi Xu; Andrew Lorrey; Quansheng Ge; Xuemei Shao; Vasile Ersek; Alexey Ekaykin; P. Graham Mortyn; Eugene R. Wahl; Rixt de Jong; Trevor J. Porter; Marie-Alexandrine Sicre; Chris S. M. Turney; Elisabeth Isaksson; Marit-Solveig Seidenkrantz; Andrew D. Moy; Mirko Severi; Helen V. McGregor; Johannes P. Werner; Lucien von Gunten; Kristine L. DeLong; Philipp Munz; Steven J. Phipps; Dmitriy V. Ovchinnikov; Nicholas P. McKay; Andre Ernest J. Viau; Anne Hormes; Hans Oerter; Kazuho Horiuchi
PAGES, a core project of Future Earth, is supported by the U.S. and Swiss National Science Foundations. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Some of this work was conducted as part of the North America 2k Working Group supported by the John Wesley Powell Center for Analysis and Synthesis, funded by the U.S. Geological Survey. B. Bauer, W. Gross, and E. Gille (NOAA National Centers for Environmental Information) are gratefully acknowledged for helping assemble the data citations and creating the NCEI versions of the PAGES 2k data records. We thank all the investigators whose commitment to data sharing enables the open science ethos embodied by this project.
Past Global Changes Magazine | 2017
Fredrik Charpentier Ljungqvist; Paul J. Krusic; Jürg Luterbacher; J. F. González-Rouco; E García Bustamante; Ca Melo Aguilar; Johannes P. Werner
Summer temperature and drought co-variability : Euro-Med2k workshop, Stockholm, Sweden, 1-2 December 2016