Johannes Sahlmann
European Southern Observatory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Johannes Sahlmann.
Astronomy and Astrophysics | 2009
Johannes Sahlmann; Serge Menardi; Roberto Abuter; Matteo Accardo; Sergio Mottini; Francoise Delplancke
Context. The fringe sensor unit (FSU) is the central element of the phase referenced imaging and micro-arcsecond astrometry (PRIMA) dual-feed facility and provides fringe sensing for all observation modes, comprising off-axis fringe tracking, phase referenced imaging, and high-accuracy narrow-angle astrometry. It is installed at the Very Large Telescope Interferometer (VLTI) and successfully served the fringe-tracking loop during the initial commissioning phase. Aims. To maximise sensitivity, speed, and robustness, the FSU is designed to operate in the infrared K-band and to include spatial filtering after beam combination and a very-low-resolution spectrometer without photometric channels. It consists of two identical fringe sensors for dual-star operation in PRIMA astrometric mode. Methods. Unique among interferometric beam combiners, the FSU uses spatial phase modulation in bulk optics to retrieve real-time estimates of fringe phase after spatial filtering. The beam combination design accommodates a laser metrology for pathlength monitoring. An R = 20 spectrometer across the K-band makes the retrieval of the group delay signal possible. The calibration procedure uses the artificial light source of the VLTI laboratory and is based on Fourier transform spectroscopy to remove instrumental effects. Results. The FSU was integrated and aligned at the VLTI in July and August 2008. It yields phase and group delay measurements at sampling rates up to 2 kHz, which are used to drive the fringe-tracking control loop. During the first commissioning runs, the FSU was used to track the fringes of stars with K-band magnitudes as faint as mK = 9.0, using two VLTI auxiliary telescopes (AT) and baselines of up to 96 m. Fringe tracking using two Very Large Telescope (VLT) unit telescopes was demonstrated. Conclusions. The concept of spatial phase-modulation for fringe sensing and tracking in stellar interferometry is demonstrated for the first time with the FSU. During initial commissioning and combining stellar light with two ATs, the FSU showed its ability to improve the VLTI sensitivity in K-band by more than one magnitude towards fainter objects, which is fundamental for achieving the scientific objectives of PRIMA.
Proceedings of SPIE | 2006
Francoise Delplancke; Frederic Derie; Samuel A. Leveque; Serge Menardi; Roberto Abuter; Luigi Andolfato; Pascal Ballester; Jeroen de Jong; Nicola Di Lieto; Philippe Duhoux; R. Frahm; Philippe B. Gitton; Andreas Glindemann; Ralf Palsa; Florence Puech; Johannes Sahlmann; Nicolas Schuhler; Thanh Phan Duc; Bruno Valat; Anders Wallander
PRIMA, the Phase-Referenced Imaging and Micro-arcsecond Astrometry facility for the Very Large Telescope Interferometer, is now nearing the end of its manufacturing phase. An intensive test period of the various sub-systems (star separators, fringe sensor units and incremental metrology) and of their interactions in the global system will start in Garching as soon as they are delivered. The status and performances of the individual sub-systems are presented in this paper as well as the proposed observation and calibration strategy to reach the challenging goal of high-accuracy differential astrometry at 10 μas level.
Proceedings of SPIE | 2008
Nicola Di Lieto; Pierre Haguenauer; Johannes Sahlmann; Gautam Vasisht
In stellar interferometry fringe-tracking is a method of stabilizing the Optical Pathlength Difference (OPD) from the observed astronomical source to the instrument detector via different telescopes in an interferometric array. At the ESO Very Large Telescope Interferometer, which includes four 8.2 m class Unit Telescopes (UTs), stabilization to better than a tenth of the observing wavelength is required in order to improve the quality and sensitivity of fringe measurements on the interferometers scientific instruments. Unfortunately, fast mechanical vibrations due to myriad sources in the observatory infrastructure propagate to various mirrors in the optical path and must be compensated for in real time. Due to its limited bandwidth the fringe tracking loop cannot be used for this purpose. Alternative approaches must therefore be adopted. Vibrations imparted to the primary, secondary and tertiary mirrors of the UTs are currently measured by a grid of suitably placed accelerometers, converted to optical pathlengths and cancelled by a wideband feedforward compensation algorithm to a downstream optical delay line. Although very effective, it is obvious that this system can not compensate for vibrations originating elsewhere on the optical path. We present here an adaptive narrow-band cancellation algorithm that can compensate remaining vibrations measured on the stellar signal on condition that they are sufficiently stable in amplitude and frequency.
Proceedings of SPIE | 2010
Pierre Haguenauer; Jaime Alonso; Pierre Bourget; S. Brillant; Philippe B. Gitton; Stephane Guisard; Sébastien Poupar; Nicolas Schuhler; Roberto Abuter; Luigi Andolfato; Guillaume Blanchard; Jean-Philippe Berger; Angela Cortes; Frederic Derie; Francoise Delplancke; Nicola Di Lieto; Christophe Dupuy; Bruno Gilli; Andreas Glindemann; Serge Guniat; Gerhard Huedepohl; Andreas Kaufer; Jean-Baptiste Le Bouquin; Samuel A. Leveque; Serge Menardi; A. Mérand; S. Morel; Isabelle Percheron; Than Phan Duc; Andres Pino
The ESO Very Large Telescope Interferometer (VLTI) offers access to the four 8-m Unit Telescopes (UT) and the four 1.8-m Auxiliary Telescopes (AT) of the Paranal Observatory located in the Atacama Desert in northern Chile. The two VLTI instruments, MIDI and AMBER deliver regular scientific results. In parallel to the operation, the instruments developments are pursued, and new modes are studied and commissioned to offer a wider range of scientific possibilities to the community. New configurations of the ATs array are discussed with the science users of the VLTI and implemented to optimize the scientific return. The monitoring and improvement of the different systems of the VLTI is a continuous work. The PRIMA instrument, bringing astrometry capability to the VLTI and phase referencing to the instruments has been successfully installed and the commissioning is ongoing. The possibility for visiting instruments has been opened to the VLTI facility.
Proceedings of SPIE | 2008
Roberto Abuter; Dan Popovic; Eszter Pozna; Johannes Sahlmann; F. Eisenhauer
The VLTI control architecture is based on a real time distributed system involving dozens of specialized computers. Several control loops are required to run the VLTI, e.g. for fringe tracking, angle tracking, injection optimization and vibration cancellation. These control systems rely on a low latency, deterministic shared memory mechanism. It communicates in the form of a close ring, which includes all devices involved in those loops. Through this ring, sensor data, intermediate filtered signals, final actuator set-points and feedbacks flow at rates up to 8 kHz. Data in this ring can be consumed by any node asynchronously. In many cases, those signals are also the astronomical observable (e.g. the beam combiner fluxes for astrometry) or are used offline, in order to improve the quality of the scientific data reduction and to debug the system. With the purpose of relieving the control applications of the simultaneous need to record their signals, a centralized generic recording device has been designed and implemented at the VLTI. In this paper, we describe its architecture and show that by over-sampling, streaming and posterior filtering on a separate computer it is possible to overcome the asynchronous nature of the system. We demonstrate that it is feasible to capture data in real time, verify time reference consistency and store on disk at rates up to ~50 Mbit/s, fulfilling the current VLTI requirements.
Proceedings of SPIE | 2010
Johannes Sahlmann; Roberto Abuter; Serge Menardi; C. Schmid; N. Di Lieto; Francoise Delplancke; R. Frahm; N. Gomes; P. Haguenauer; Samuel A. Leveque; S. Morel; A. Mueller; T. Phan Duc; Nicolas Schuhler; G. T. van Belle
The fringe sensor unit (FSU) is the central element of the phase referenced imaging and micro-arcsecond astrometry (PRIMA) dual-feed facility for the Very Large Telescope interferometer (VLTI). It has been installed at the Paranal observatory in August 2008 and is undergoing commissioning and preparation for science operation. Commissioning observations began shortly after installation and first results include the demonstration of spatially encoded fringe sensing and the increase in VLTI limiting magnitude for fringe tracking. However, difficulties have been encountered because the FSU does not incorporate real-time photometric correction and its fringe encoding depends on polarisation. These factors affect the control signals, especially their linearity, and can disturb the tracking control loop. To account for this, additional calibration and characterisation efforts are required. We outline the instrument concept and give an overview of the commissioning results obtained so far. We describe the effects of photometric variations and beam-train polarisation on the instrument operation and propose possible solutions. Finally, we update on the current status in view of the start of astrometric science operation with PRIMA.
Proceedings of SPIE | 2008
Pierre Haguenauer; Roberto Abuter; Jaime Alonso; Javier Argomedo; Bertrand Bauvir; Guillaume Blanchard; Henri Bonnet; S. Brillant; Michael Cantzler; Frederic Derie; Francoise Delplancke; Nicola Di Lieto; Christophe Dupuy; Yves Durand; Philippe B. Gitton; Bruno Gilli; Andreas Glindemann; Serge Guniat; Stephane Guisard; Nicolas Haddad; Gerhard Hudepohl; Christian A. Hummel; Nathaniel Jesuran; Andreas Kaufer; Bertrand Koehler; Jean-Baptiste Le Bouquin; Samuel A. Leveque; C. Lidman; Pedro Mardones; Serge Menardi
The ESO Very Large Telescope Interferometer (VLTI) offers access to the four 8 m Unit Telescopes (UT) and the four 1.8 m Auxiliary Telescopes (AT) of the Paranal Observatory located in the Atacama Desert in northern Chile. The fourth AT has been delivered to operation in December 2006, increasing the flexibility and simultaneous baselines access of the VLTI. Regular science operations are now carried on with the two VLTI instruments, AMBER and MIDI. The FINITO fringe tracker is now used for both visitor and service observations with ATs and will be offered on UTs in October 2008, bringing thus the fringe tracking facility to VLTI instruments. In parallel to science observations, technical periods are also dedicated to the characterization of the VLTI environment, upgrades of the existing systems, and development of new facilities. We will describe the current status of the VLTI and prospects on future evolution.
Proceedings of SPIE | 2010
Sébastien Poupar; Pierre Haguenauer; A. Mérand; Jaime Alonso; Pierre Bourget; S. Brillant; Roberto Castillo; Nicola Di Lieto; Jean-Louis Lizon; Philippe B. Gitton; Johannes Sahlmann; Nicolas Schuhler
The ESO Very Large Telescope Interferometer (VLTI) offers the unique access to the combination of the four 8-meter Unit Telescopes (UT) of Cerro Paranal. The quality of the scientific observations in interferometric mode is strongly related to the stability of the optical path difference (OPD) between the telescopes. Vibrations at the level of the telescopes and affecting the mirrors were shown to be an important source of perturbation for the OPD. ESO has thus started an important effort on the UTs and VLTI to tackle this effect. Active controls based on accelerometers and phase measurements have been developed to provide real-time correction of the variation of OPD introduced by vibrations. Systematic studies and measurement of the sources of vibration (instruments, wind, telescope altitude, ...) have been performed. Solutions to reduce the vibrations via design modification and/or new operation configurations are studied and implemented. To ensure good operational conditions, the levels of vibrations are regularly monitored to control any environmental change. This document will describe the modifications implemented and foreseen and give a status of the VLTI-UT vibrations evolution.
Proceedings of SPIE | 2008
H. Bartko; O. Pfuhl; F. Eisenhauer; R. Genzel; S. Gillessen; S. Rabien; Roberto Abuter; Gerard T. van Belle; Francoise Delplancke; Serge Menardi; Johannes Sahlmann
The Phase-Referenced Imaging and Micro-arcsecond Astrometry (PRIMA) facility is scheduled for installation in the Very Large Telescope Interferometer observatory in Paranal, Chile, in the second half of 2008. Its goal is to provide an astrometric accuracy in the micro-arcsecond range. High precision astrometry can be applied to explore the dynamics of the dense stellar cluster. Especially models for the formation of stars near super massive black holes or the fast transfer of short-lived massive stars into the innermost parsec of our galaxy can be tested. By measuring the orbits of stars close the the massive black hole one can probe deviations from a Keplerian motion. Such deviations could be due to a swarm of dark, stellar mass objects that perturb the point mass solution. At the same time the orbits are affected by relativistic corrections which thus can be tested. The ultimate goal is to test the effects of general relativity in the strong gravitational field. The latter can be probed with the near infrared flares of SgrA* which are most likely due to accretion phenomena onto the black hole. We study the expected performance of PRIMA for astrometric measurements in the Galactic Center based on laboratory measurements and discuss possible observing strategies.
Proceedings of SPIE | 2010
Roberto Abuter; Johannes Sahlmann; Eszter Pozna
The dual feed astrometric instrument software of PRIMA (PACMAN) that is currently being integrated at the VLTI will use two spatially modulated fringe sensor units and a laser metrology system to carry out differential astrometry. Its software and hardware compromises a distributed system involving many real time computers and workstations operating in a synchronized manner. Its architecture has been designed to allow the construction of efficient and flexible calibration and observation procedures. In parallel, a novel scheme of integrating M-code (MATLAB/OCTAVE) with standard VLT (Very Large Telescope) control software applications had to be devised in order to support numerically intensive operations and to have the capacity of adapting to fast varying strategies and algorithms. This paper presents the instrument software, including the current operational sequences for the laboratory calibration and sky calibration. Finally, a detailed description of the algorithms with their implementation, both under M and C code, are shown together with a comparative analysis of their performance and maintainability.