Nicola Di Lieto
European Southern Observatory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nicola Di Lieto.
Proceedings of SPIE | 2006
Francoise Delplancke; Frederic Derie; Samuel A. Leveque; Serge Menardi; Roberto Abuter; Luigi Andolfato; Pascal Ballester; Jeroen de Jong; Nicola Di Lieto; Philippe Duhoux; R. Frahm; Philippe B. Gitton; Andreas Glindemann; Ralf Palsa; Florence Puech; Johannes Sahlmann; Nicolas Schuhler; Thanh Phan Duc; Bruno Valat; Anders Wallander
PRIMA, the Phase-Referenced Imaging and Micro-arcsecond Astrometry facility for the Very Large Telescope Interferometer, is now nearing the end of its manufacturing phase. An intensive test period of the various sub-systems (star separators, fringe sensor units and incremental metrology) and of their interactions in the global system will start in Garching as soon as they are delivered. The status and performances of the individual sub-systems are presented in this paper as well as the proposed observation and calibration strategy to reach the challenging goal of high-accuracy differential astrometry at 10 μas level.
Proceedings of SPIE | 2008
Nicola Di Lieto; Pierre Haguenauer; Johannes Sahlmann; Gautam Vasisht
In stellar interferometry fringe-tracking is a method of stabilizing the Optical Pathlength Difference (OPD) from the observed astronomical source to the instrument detector via different telescopes in an interferometric array. At the ESO Very Large Telescope Interferometer, which includes four 8.2 m class Unit Telescopes (UTs), stabilization to better than a tenth of the observing wavelength is required in order to improve the quality and sensitivity of fringe measurements on the interferometers scientific instruments. Unfortunately, fast mechanical vibrations due to myriad sources in the observatory infrastructure propagate to various mirrors in the optical path and must be compensated for in real time. Due to its limited bandwidth the fringe tracking loop cannot be used for this purpose. Alternative approaches must therefore be adopted. Vibrations imparted to the primary, secondary and tertiary mirrors of the UTs are currently measured by a grid of suitably placed accelerometers, converted to optical pathlengths and cancelled by a wideband feedforward compensation algorithm to a downstream optical delay line. Although very effective, it is obvious that this system can not compensate for vibrations originating elsewhere on the optical path. We present here an adaptive narrow-band cancellation algorithm that can compensate remaining vibrations measured on the stellar signal on condition that they are sufficiently stable in amplitude and frequency.
Proceedings of SPIE | 2012
Florian Kerber; H. U. Käufl; Pedro Baksai; Nicola Di Lieto; Danuta Dobrzycka; Philippe Duhoux; Gert Finger; Stephanie Heikamp; Derek Ives; Gerd Jakob; Lars Lundin; Dimitri Mawet; Leander Mehrgan; Y. Momany; Vincent Moreau; E. Pantin; Miguel Riquelme; Stefan Sandrock; Ralf Siebenmorgen; Alain Smette; Julian Taylor; Mario E. van den Ancker; Guillermo Valdes; Lars Venema; Ueli Weilenmann
We present an overview of the VISIR upgrade project. VISIR is the mid-infrared imager and spectrograph at ESO’s VLT. The project team is comprised of ESO staff and members of the original VISIR consortium: CEA Saclay and ASTRON. The project plan is based on input from the ESO user community with the goal of enhancing the scientific performance and efficiency of VISIR by a combination of measures: installation of improved hardware, optimization of instrument operations and software support. The cornerstone of the upgrade is the 1k by 1k Si:As AQUARIUS detector array (Raytheon) which has been carefully characterized in ESO’s IR detector test facility (modified TIMMI 2 instrument). A prism spectroscopic mode will cover the N-band in a single observation. New scientific capabilities for high resolution and high-contrast imaging will be offered by sub-aperture mask (SAM) and phase-mask coronagraphic (4QPM/AGPM) modes. In order to make optimal use of favourable atmospheric conditions a water vapour monitor has been deployed on Paranal, allowing for real-time decisions and the introduction of a user-defined constraint on water vapour. During the commissioning in 2012 it was found that the on-sky sensitivity of the AQUARIUS detector was significantly below expectations and that VISIR was not ready to go back to science operations. Extensive testing of the detector arrays in the laboratory and on-sky enabled us to diagnose the cause for the shortcoming of the detector as excess low frequency noise (ELFN). It is inherent to the design chosen for this detector and can’t be remedied by changing the detector set-up. Since this is a form of correlated noise its impact can be limited by modulating the scene recorded by the detector. We have studied several mitigation options and found that faster chopping using the secondary mirror (M2) of the VLT offers the most promising way forward. Faster M2 chopping has been tested and is scheduled for implementation before the end of 2014 after which we plan to re-commission VISIR. In addition an upgrade of the IT infrastructure related to VISIR is planned in order to support burst-mode operations. The upgraded VISIR will be a powerful instrument providing close to background limited performance for diffraction-limited observations at an 8-m telescope. It will offer synergy with facilities such as ALMA, JWST, VLTI and SOFIA, while a wealth of targets is available from survey work (e.g. VISTA, WISE). In addition it will bring confirmation of the technical readiness and scientific value of several aspects of potential mid-IR instrumentation at Extremely Large Telescopes.
Proceedings of SPIE | 2008
Jean-Baptiste Le Bouquin; Roberto Abuter; Bertrand Bauvir; Henri Bonnet; Pierre Haguenauer; Nicola Di Lieto; Serge Menardi; S. Morel; Fredrik T. Rantakyrö; Markus Schoeller; Anders Wallander; Stefan Wehner
FINITO (the VLTI three beam fringe-tracker) has been offered in September 2007 to the astronomical community for observations with the scientific instruments AMBER and MIDI. In this paper, we describe the last improvements of the fringe-tracking loop and its actual performance when operating with the 1.8m Auxiliary Telescopes. We demonstrate the gain provided to the scientific observations. Finally, we discuss how FINITO real-time data could be used in post-processing to enhance the scientific return of the facility.
Proceedings of SPIE | 2010
Pierre Haguenauer; Jaime Alonso; Pierre Bourget; S. Brillant; Philippe B. Gitton; Stephane Guisard; Sébastien Poupar; Nicolas Schuhler; Roberto Abuter; Luigi Andolfato; Guillaume Blanchard; Jean-Philippe Berger; Angela Cortes; Frederic Derie; Francoise Delplancke; Nicola Di Lieto; Christophe Dupuy; Bruno Gilli; Andreas Glindemann; Serge Guniat; Gerhard Huedepohl; Andreas Kaufer; Jean-Baptiste Le Bouquin; Samuel A. Leveque; Serge Menardi; A. Mérand; S. Morel; Isabelle Percheron; Than Phan Duc; Andres Pino
The ESO Very Large Telescope Interferometer (VLTI) offers access to the four 8-m Unit Telescopes (UT) and the four 1.8-m Auxiliary Telescopes (AT) of the Paranal Observatory located in the Atacama Desert in northern Chile. The two VLTI instruments, MIDI and AMBER deliver regular scientific results. In parallel to the operation, the instruments developments are pursued, and new modes are studied and commissioned to offer a wider range of scientific possibilities to the community. New configurations of the ATs array are discussed with the science users of the VLTI and implemented to optimize the scientific return. The monitoring and improvement of the different systems of the VLTI is a continuous work. The PRIMA instrument, bringing astrometry capability to the VLTI and phase referencing to the instruments has been successfully installed and the commissioning is ongoing. The possibility for visiting instruments has been opened to the VLTI facility.
Proceedings of SPIE | 2008
Pierre Haguenauer; Roberto Abuter; Jaime Alonso; Javier Argomedo; Bertrand Bauvir; Guillaume Blanchard; Henri Bonnet; S. Brillant; Michael Cantzler; Frederic Derie; Francoise Delplancke; Nicola Di Lieto; Christophe Dupuy; Yves Durand; Philippe B. Gitton; Bruno Gilli; Andreas Glindemann; Serge Guniat; Stephane Guisard; Nicolas Haddad; Gerhard Hudepohl; Christian A. Hummel; Nathaniel Jesuran; Andreas Kaufer; Bertrand Koehler; Jean-Baptiste Le Bouquin; Samuel A. Leveque; C. Lidman; Pedro Mardones; Serge Menardi
The ESO Very Large Telescope Interferometer (VLTI) offers access to the four 8 m Unit Telescopes (UT) and the four 1.8 m Auxiliary Telescopes (AT) of the Paranal Observatory located in the Atacama Desert in northern Chile. The fourth AT has been delivered to operation in December 2006, increasing the flexibility and simultaneous baselines access of the VLTI. Regular science operations are now carried on with the two VLTI instruments, AMBER and MIDI. The FINITO fringe tracker is now used for both visitor and service observations with ATs and will be offered on UTs in October 2008, bringing thus the fringe tracking facility to VLTI instruments. In parallel to science observations, technical periods are also dedicated to the characterization of the VLTI environment, upgrades of the existing systems, and development of new facilities. We will describe the current status of the VLTI and prospects on future evolution.
Proceedings of SPIE | 2006
M. Schöller; Javier Argomedo; Bertrand Bauvir; Leonardo Blanco-Lopez; Henri Bonnet; S. Brillant; Michael Cantzler; Johan Carstens; Fabio Caruso; Christian Choque-Cortez; Frederic Derie; Francoise Delplancke; Nicola Di Lieto; Martin Dimmler; Yves Durand; Mark Ferrari; Emmanuel Galliano; Philippe B. Gitton; Bruno Gilli; Andreas Glindemann; Serge Guniat; Stephane Guisard; Nicolas Haddad; Pierre Haguenauer; Nico Housen; Gerd Hudepohl; Christian A. Hummel; Andreas Kaufer; M. Kiekebusch; Bertrand Koehler
The ESO Very Large Telescope Interferometer (VLTI) is the first general-user interferometer that offers near- and mid-infrared long-baseline interferometric observations in service and visitor mode to the whole astronomical community. Over the last two years, the VLTI has moved into its regular science operation mode with the two science instruments, MIDI and AMBER, both on all four 8m Unit Telescopes and the first three 1.8m Auxiliary Telescopes. We are currently devoting up to half of the available time for science, the rest is used for characterization and improvement of the existing system, plus additional installations. Since the first fringes with the VLTI on a star were obtained on March 17, 2001, there have been five years of scientific observations, with the different instruments, different telescopes and baselines. These observations have led so far to more than 40 refereed publications. We describe the current status of the VLTI and give an outlook for its near future.
Proceedings of SPIE | 2012
Pierre Haguenauer; Roberto Abuter; Luigi Andolfato; Jaime Alonso; Guillaume Blanchard; Jean-Philippe Berger; Pierre Bourget; S. Brillant; Frederic Derie; Francoise Delplancke; Nicola Di Lieto; Christophe Dupuy; Bruno Gilli; Philippe B. Gitton; J. C. González; Stephane Guisard; Serge Guniat; Gerhard Hudepohl; Andreas Kaufer; Samuel A. Leveque; Serge Menardi; A. Mérand; S. Morel; Isabelle Percheron; Than Phan Duc; Sébastien Poupar; Andres Ramirez; Claudio Reineiro; Sridharan Rengaswamy; Thomas Rivinius
The ESO Very Large Telescope Interferometer (VLTI) offers access to the four 8-m Unit Telescopes (UT) and the four 1.8-m Auxiliary Telescopes (AT) of the Paranal Observatory located in the Atacama Desert in northern Chile. The two VLTI instruments, MIDI and AMBER deliver regular scientific results. In parallel to the operation, the instruments developments are pursued, and new modes are studied and commissioned to offer a wider range of scientific possibilities to the community and increase sensitivity. New configurations of the ATs have been offered and are frequently discussed with the science users of the VLTI and implemented to optimize the scientific return. The PRIMA instrument, bringing astrometry capability to the VLTI and phase referencing to the instruments is being commissioned. The visitor instrument PIONIER is now fully operational and bringing imaging capability to the VLTI. The current status of the VLTI is described with successes and scientific results, and prospects on future evolution are presented.
Proceedings of SPIE | 2010
Sébastien Poupar; Pierre Haguenauer; A. Mérand; Jaime Alonso; Pierre Bourget; S. Brillant; Roberto Castillo; Nicola Di Lieto; Jean-Louis Lizon; Philippe B. Gitton; Johannes Sahlmann; Nicolas Schuhler
The ESO Very Large Telescope Interferometer (VLTI) offers the unique access to the combination of the four 8-meter Unit Telescopes (UT) of Cerro Paranal. The quality of the scientific observations in interferometric mode is strongly related to the stability of the optical path difference (OPD) between the telescopes. Vibrations at the level of the telescopes and affecting the mirrors were shown to be an important source of perturbation for the OPD. ESO has thus started an important effort on the UTs and VLTI to tackle this effect. Active controls based on accelerometers and phase measurements have been developed to provide real-time correction of the variation of OPD introduced by vibrations. Systematic studies and measurement of the sources of vibration (instruments, wind, telescope altitude, ...) have been performed. Solutions to reduce the vibrations via design modification and/or new operation configurations are studied and implemented. To ensure good operational conditions, the levels of vibrations are regularly monitored to control any environmental change. This document will describe the modifications implemented and foreseen and give a status of the VLTI-UT vibrations evolution.
Proceedings of SPIE | 2014
M. Kiekebusch; Christian Lucuix; Toomas Erm; Gianluca Chiozzi; Michele Zamparelli; Lothar Kern; Roland Brast; Werther Pirani; Roland Reiss; Dan Popovic; Jens Knudstrup; Michel Duchateau; Stefan Sandrock; Nicola Di Lieto
ESO is currently in the final phase of the standardization process for PC-based Programmable Logical Controllers (PLCs) as the new platform for the development of control systems for future VLT/VLTI instruments. The standard solution used until now consists of a Local Control Unit (LCU), a VME-based system having a CPU and commercial and proprietary boards. This system includes several layers of software and many thousands of lines of code developed and maintained in house. LCUs have been used for several years as the interface to control instrument functions but now are being replaced by commercial off-the-shelf (COTS) systems based on BECKHOFF Embedded PCs and the EtherCAT fieldbus. ESO is working on the completion of the software framework that enables a seamless integration into the VLT control system in order to be ready to support upcoming instruments like ESPRESSO and ERIS, that will be the first fully VLT compliant instruments using the new standard. The technology evaluation and standardization process has been a long and combined effort of various engineering disciplines like electronics, control and software, working together to define a solution that meets the requirements and minimizes the impact on the observatory operations and maintenance. This paper presents the challenges of the standardization process and the steps involved in such a change. It provides a technical overview of how industrial standards like EtherCAT, OPC-UA, PLCOpen MC and TwinCAT can be used to replace LCU features in various areas like software engineering and programming languages, motion control, time synchronization and astronomical tracking.