John A. Blaho
Icahn School of Medicine at Mount Sinai
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by John A. Blaho.
Microbes and Infection | 2001
Martine Aubert; John A. Blaho
Human herpes simplex virus (HSV) is cytolytic and has profound impacts on its host cells. Consequences of HSV infection include the induction of apoptosis and the concomitant synthesis of proteins which act to block this process. We review recent evidence showing how this important human pathogen modulates the fundamental cell death process.
Advances in Virus Research | 2006
Marie L. Nguyen; John A. Blaho
Herpes simplex virus (HSV) infection triggers apoptosis in infected cells. However, proteins synthesized later in infected cells prevent apoptotic cell death from ensuing. In vivo data showing that apoptosis accompanies herpes stromal keratitis and encephalitis suggest that apoptotic modulation plays a role in the development of herpetic disease. Tremendous progress has been made toward identifying the viral factors that are responsible for inducing and inhibiting apoptosis during infection. However, the mechanisms whereby they act are still largely unknown. Recent studies have illustrated a wide diversity in the cellular response to HSV-triggered apoptosis, emphasizing the importance of host factors in this process. Together, these findings indicate that apoptosis during HSV infection represents an important virus-host interaction process, which likely influences viral pathogenesis.
Journal of Virology | 2001
Martine Aubert; Stephen A. Rice; John A. Blaho
ABSTRACT We previously reported that a recombinant ICP27-null virus stimulated, but did not prevent, apoptosis in human HEp-2 cells during infection (M. Aubert and J. A. Blaho, J. Virol. 73:2803–2813, 1999). In the present study, we used a panel of 15 recombinant ICP27 mutant viruses to determine which features of herpes simplex virus type 1 (HSV-1) replication are required for the apoptosis-inhibitory activity. Each virus was defined experimentally as either apoptotic, partially apoptotic, or nonapoptotic based on infected HEp-2 cell morphologies, percentages of infected cells with condensed chromatin, and patterns of specific cellular death factor processing. Viruses d27-1, d1-5,d1-2, M11, M15, M16, n504R,n406R, n263R, and n59R are apoptotic or partially apoptotic in HEp-2 cells and severely defective for growth in Vero cells. Viruses d2-3,d3-4, d4-5, d5-6, andd6-7 are nonapoptotic, demonstrating that ICP27 contains a large amino-terminal region, including its RGG box RNA binding domain, which is not essential for apoptosis prevention. Accumulations of viral TK, VP16, and gD but not gC, ICP22, or ICP4 proteins correlated with prevention of apoptosis during the replication of these viruses. Of the nonapoptotic viruses, d4-5 did not produce gC, indicating that accumulation of true late gene products is not necessary for the prevention process. Analyses of viral DNA synthesis in HEp-2 cells indicated that apoptosis prevention by HSV-1 requires that the infection proceeds to the stage in which viral DNA replication takes place. Infections performed in the presence of the drug phosphonoacetic acid confirmed that the process of viral DNA synthesis and the accumulation of true late (γ2) proteins are not required for apoptosis prevention. Based on our results, we conclude that the accumulation of HSV-1 early (β) and leaky-late (γ1) proteins correlates with the prevention of apoptosis in infected HEp-2 cells.
Journal of Virology | 2001
Anna Kotsakis; Lisa E. Pomeranz; Amanda Blouin; John A. Blaho
ABSTRACT Full-length VP22 is necessary for efficient spread of herpes simplex virus type 1 (HSV-1) from cell to cell during the course of productive infection. VP22 is a virion phosphoprotein, and its nuclear localization initiates between 5 and 7 h postinfection (hpi) during the course of synchronized infection. The goal of this study was to determine which features of HSV-1 infection function to regulate the translocation of VP22 into the nucleus. We report the following. (i) HSV-1(F)-induced microtubule rearrangement occurred in infected Vero cells by 13 hpi and was characterized by the loss of obvious microtubule organizing centers (MtOCs). Reformed MtOCs were detected at 25 hpi. (ii) VP22 was observed in the cytoplasm of cells prior to microtubule rearrangement and localized in the nucleus following the process. (iii) Stabilization of microtubules by the addition of taxol increased the accumulation of VP22 in the cytoplasm either during infection or in cells expressing VP22 in the absence of other viral proteins. (iv) While VP22 localized to the nuclei of cells treated with the microtubule depolymerizing agent nocodazole, either taxol or nocodazole treatment prevented optimal HSV-1(F) replication in Vero cells. (v) VP22 migration to the nucleus occurred in the presence of phosphonoacetic acid, indicating that viral DNA and true late protein synthesis were not required for its translocation. Based on these results, we conclude that (iv) microtubule reorganization during HSV-1 infection facilitates the nuclear localization of VP22.
Journal of Virology | 2006
Carol Duffy; Jennifer H. LaVail; Andrew N. Tauscher; Elizabeth Wills; John A. Blaho; Joel D. Baines
ABSTRACT Herpes simplex virus type 1 (HSV-1) virions, like those of all herpesviruses, contain a proteinaceous layer termed the tegument that lies between the nucleocapsid and viral envelope. The HSV-1 tegument is composed of at least 20 different viral proteins of various stoichiometries. VP22, the product of the UL49 gene, is one of the most abundant tegument proteins and is conserved among the alphaherpesviruses. Although a number of interesting biological properties have been attributed to VP22, its role in HSV-1 infection is not well understood. In the present study we have generated both a UL49-null virus and its genetic repair and characterized their growth in both cultured cells and the mouse cornea. While single-step growth analyses indicated that VP22 is dispensable for virus replication at high multiplicities of infection (MOIs), analyses of plaque morphology and intra- and extracellular multistep growth identified a role for VP22 in viral spread during HSV-1 infection at low MOIs. Specifically, VP22 was not required for either virion infectivity or cell-cell spread but was required for accumulation of extracellular virus to wild-type levels. We found that the absence of VP22 also affected virion composition. Intracellular virions generated by the UL49-null virus contained reduced amounts of ICP0 and glycoproteins E and D compared to those generated by the wild-type and UL49-repaired viruses. In addition, viral spread in the mouse cornea was significantly reduced upon infection with the UL49-null virus compared to infection with the wild-type and UL49-repaired viruses, identifying a role for VP22 in viral spread in vivo as well as in vitro.
Journal of Virology | 2008
Esra Fakioglu; Sarah S. Wilson; Pedro M. M. Mesquita; Ehsan Hazrati; Natalia Cheshenko; John A. Blaho; Betsy C. Herold
ABSTRACT Secretory leukocyte protease inhibitor (SLPI), an anti-inflammatory mediator of mucosal immunity, inhibits human immunodeficiency virus (HIV) and herpes simplex virus (HSV) in cell culture. Epidemiological studies demonstrate that higher concentrations of SLPI in mucosal secretions are associated with a reduced risk of HIV transmission. The current studies were designed to test the hypothesis that HSV triggers a loss of SLPI to evade innate immunity and that this response may contribute to the increased risk of HIV infection in the setting of HSV infection. Exposure of human cervical epithelial cells to HSV-1 or HSV-2, but not HIV or vesicular stomatitis virus, triggered a significant and sustained reduction in SLPI levels. The reduction persisted when cells were infected in the presence of acyclovir but not following infection with UV-inactivated virus, indicating that viral gene expression, but not replication, is required. Reverse transcriptase PCR studies demonstrated that the loss of SLPI is mediated by downregulation of gene expression. SLPI downregulation was associated with activation of NF-κB signaling pathways and upregulation of proinflammatory cytokines, consistent with the known inhibitor effects of SLPI on NF-κB pathways. The downregulation mapped to viral early-gene expression, as variants impaired in expression of the ICP4 or ICP0 immediate-early gene failed to downregulate SLPI or activate NF-κB. Together, these results identify a novel role for HSV immediate-early-gene expression in regulating mucosal immune responses.
Journal of Virology | 2000
Lisa E. Pomeranz; John A. Blaho
ABSTRACT VP22, the 301-amino-acid phosphoprotein product of the herpes simplex virus type 1 (HSV-1) UL49 gene, is incorporated into the tegument during virus assembly. We previously showed that highly modified forms of VP22 are restricted to infected cell nuclei (L. E. Pomeranz and J. A. Blaho, J. Virol. 73:6769–6781, 1999). VP22 packaged into infectious virions appears undermodified, and nuclear- and virion-associated forms are easily differentiated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (J. A. Blaho, C. Mitchell, and B. Roizman, J. Biol. Chem. 269:17401–17410, 1994). As VP22 packaging-associated undermodification is unique among HSV-1 tegument proteins, we sought to determine the role of VP22 during viral replication. We now show the following. (i) VP22 modification occurs in the absence of other viral factors in cell lines which stably express its gene. (ii) RF177, a recombinant HSV-1 strain generated for this study, synthesizes only the amino-terminal 212 amino acids of VP22 (Δ212). (iii) Δ212 localizes to the nucleus and incorporates into virions during RF177 infection of Vero cells. Thus, the carboxy-terminal region is not required for nuclear localization of VP22. (iv) RF177 synthesizes the tegument proteins VP13/14, VP16, and VHS (virus host shutoff) and incorporates them into infectious virions as efficiently as wild-type virus. However, (v) the loss of VP22 in RF177 virus particles is compensated for by a redistribution of minor virion components. (vi) Mature RF177 virions are identical to wild-type particles based on electron microscopic analyses. (vii) Single-step growth kinetics of RF177 in Vero cells are essentially identical to those of wild-type virus. (viii) RF177 plaque size is reduced by nearly 40% compared to wild-type virus. Based on these results, we conclude that VP22 is not required for tegument formation, virion assembly/maturation, or productive HSV-1 replication, while the presence of full-length VP22 in the tegument is needed for efficient virus spread in Vero cell monolayers.
Journal of Virology | 2006
Christine M. Sanfilippo; John A. Blaho
ABSTRACT Apoptosis is a highly regulated programmed cell death process which is activated during normal development and by various stimuli, such as viral infection, which disturb cellular metabolism and physiology. That herpes simplex virus type 1 (HSV-1) induces apoptosis but then prevents its killing of infected cells is well-established. However, little is known about the viral factor/event which triggers the apoptotic process. We previously reported that infections with either (i) a temperature-sensitive virus at its nonpermissive temperature which does not inject viral DNA into nuclei or (ii) various UV-inactivated wild-type viruses do not result in the induction of apoptosis (C. M. Sanfilippo, F. N. W. Chirimuuta, and J. A. Blaho, J. Virol. 78:224-239, 2004). This indicates that virus receptor binding/attachment to cells, membrane fusion, virion disassembly/tegument dispersal, virion RNAs, and capsid translocation to nuclei are not responsible for induction and implicates viral immediate-early (IE) gene expression in the process. Here, we systematically evaluated the contribution of each IE gene to the stimulation of apoptosis. Using a series of viruses individually deleted for α27, α4, and α22, we determined that these genes are not required for apoptosis induction but rather that their products play roles in its prevention, likely through regulatory effects. Sole expression of α0 acted as an “apoptoxin” that was necessary and sufficient to trigger the cell death cascade. Importantly, results using a recombinant virus which contains a stop codon in α0 showed that it was not the ICP0 protein which acted as the apoptotic inducer. Based on these findings, we propose that α0 gene expression acts as an initial inducer of apoptosis during HSV-1 infection. This represents the first description of apoptosis induction in infected cells triggered as a result of expression of a single viral gene. Expression of apoptotic viral genes is a unique mechanism through which human pathogens may modulate interactions with their host cells.
International Reviews of Immunology | 2004
Margot L. Goodkin; Elise R. Morton; John A. Blaho
Consequences of human herpes simplex virus (HSV) infection include the induction of apoptosis and the concomitant synthesis of proteins which act to block this process from killing the infected cell. Recent data has clarified our current understanding of the mechanisms of induction and prevention of apoptosis by HSV. These findings emphasize the fact that modulation of apoptosis by HSV during infection is a multicomponent phenomenon. We review recent evidence showing how this important human pathogen modulates the fundamental cell death process.
Journal of Virology | 2004
Christine M. Sanfilippo; Fungai N.W Chirimuuta; John A. Blaho
ABSTRACT Wild-type herpes simplex virus type 1 (HSV-1) induces apoptosis in human epithelial HEp-2 cells, but infected cell proteins produced later in infection block the process from killing the cells. Thus, HSV-1 infection in the presence of the translational inhibitor cycloheximide (CHX) results in apoptosis. Our specific goal was to gain insight as to the viral feature(s) responsible for triggering apoptosis during HSV-1 infection. We now report the following. (i) No viral protein synthesis or death factor processing was detected after infection with HSV-1(HFEMtsB7) at 39.5°C; this mutant virus does not inject its virion DNA into the nucleus at this nonpermissive temperature. (ii) No death factor processing or apoptotic morphological changes were detected following infection with UV-irradiated, replication-defective viruses possessing transcriptionally active incoming VP16. (iii) Addition of the transcriptional inhibitor actinomycin D prevented death factor processing upon infection with the apoptotic, ICP27-deletion virus HSV-1(vBSΔ27). (iv) Apoptotic morphologies and death factor processing were not observed following infection with HSV-1(d109), a green fluorescent protein-expressing recombinant virus possessing deletions of all five immediate-early (IE) (or α) genes. (v) Finally, complete death factor processing was observed upon infection with the VP16 transactivation domain-mutant HSV-1(V422) in the presence of CHX. Based on these findings, we conclude that (vi) the expression of HSV-1 α/IE genes is required for the viral induction of apoptosis and (vii) the transactivation activity of VP16 is not necessary for this induction.