Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marie L. Nguyen is active.

Publication


Featured researches published by Marie L. Nguyen.


Journal of Virology | 2003

The PDZ Ligand Domain of the Human Papillomavirus Type 16 E6 Protein Is Required for E6's Induction of Epithelial Hyperplasia In Vivo

Marie L. Nguyen; Minh M. Nguyen; Denis Lee; Anne E. Griep; Paul F. Lambert

ABSTRACT Human papillomaviruses (HPVs) are the causative agent of warts. Infections with high-risk HPVs are associated with anogenital and head and neck cancers. One of the viral genes responsible for HPVs oncogenic activity is E6. Mice expressing the HPV-16 E6 protein in their epidermis (K14E6WT) develop epithelial hyperplasia and squamous carcinomas. Numerous cellular proteins interact with E6, some of which can be grouped based on common amino acid motifs in their E6-binding domains. One such group, the PDZ partners, including hDLG, hSCRIBBLE, MUPP1, and MAGI, bind to the carboxy-terminal four amino acids of E6 through their PDZ domains. E6s interaction with the PDZ partners leads to their degradation. Additionally, E6s binding to PDZ proteins has been correlated with its ability to transform baby rat kidney cells in tissue culture and to confer tumorigenicity onto cells in xenograft experiments. To address whether the ability of E6 to bind PDZ domain partners is necessary for E6 to confer epithelial hyperproliferation in vivo, we generated transgenic mice that express in stratified squamous epithelia a mutant of E6 lacking the last six amino acids at its carboxyl terminus, E6Δ146-151, from the human keratin 14 (K14) promoter. The K14E6Δ146-151 mice exhibit a radiation response similar to that of the K14E6WT mice, demonstrating that this protein, as predicted, retains an ability to inactivate p53. However, the K14E6Δ146-151 mice fail to display epithelial hyperplasia. These results indicate that an interaction of E6 with PDZ partners is necessary for its induction of epithelial hyperplasia.


Advances in Virus Research | 2006

Apoptosis during herpes simplex virus infection.

Marie L. Nguyen; John A. Blaho

Herpes simplex virus (HSV) infection triggers apoptosis in infected cells. However, proteins synthesized later in infected cells prevent apoptotic cell death from ensuing. In vivo data showing that apoptosis accompanies herpes stromal keratitis and encephalitis suggest that apoptotic modulation plays a role in the development of herpetic disease. Tremendous progress has been made toward identifying the viral factors that are responsible for inducing and inhibiting apoptosis during infection. However, the mechanisms whereby they act are still largely unknown. Recent studies have illustrated a wide diversity in the cellular response to HSV-triggered apoptosis, emphasizing the importance of host factors in this process. Together, these findings indicate that apoptosis during HSV infection represents an important virus-host interaction process, which likely influences viral pathogenesis.


Molecular and Cellular Biology | 2003

Requirement of PDZ-containing proteins for cell cycle regulation and differentiation in the mouse lens epithelium.

Minh M. Nguyen; Marie L. Nguyen; Georgina Caruana; Alan Bernstein; Paul F. Lambert; Anne E. Griep

ABSTRACT The roles of PDZ domain-containing proteins such as Dlg and Scrib have been well described for Drosophila; however, their requirement for mammalian development is poorly understood. Here we show that Dlg, Scrib, MAGI1, MAGI3, and MPDZ are expressed in the mouse ocular lens. We demonstrate that the increase in proliferation and defects in cellular adhesion and differentiation observed in epithelia of lenses that express E6, a viral oncoprotein that can bind to several PDZ proteins, including the human homologs of Dlg and Scrib, is dependent on E6s ability to bind these proteins via their PDZ domains. Analyses of lenses from mice carrying an insertional mutation in Dlg (dlggt ) show increased proliferation and proliferation in spatially inappropriate regions of the lens, a phenotype similar to that of lenses expressing E6. The results from this study indicate that multiple PDZ domain-containing proteins, including Dlg and Scrib, may be required for maintaining the normal pattern of growth and differentiation in the lens. Furthermore, the phenotypic similarities among the Drosophila dlg mutant, the lenses of dlggt mice, and the lenses of E6 transgenic mice suggest that Dlg may have a conserved function in regulating epithelial cell growth and differentiation across species.


Journal of Virology | 2011

The Virion Host Shutoff Protein of Herpes Simplex Virus 1 Blocks the Replication-Independent Activation of NF-κB in Dendritic Cells in the Absence of Type I Interferon Signaling

Christopher R. Cotter; Won-keun Kim; Marie L. Nguyen; Jacob S. Yount; Carolina B. López; John A. Blaho; Thomas M. Moran

ABSTRACT Immune evasion is a defining feature of the virus-host relationship. During infection, herpes simplex virus type 1 (HSV-1) utilizes multiple proteins to manipulate the host immune response. In the present study, we investigated the mechanism by which the virion host shutoff (vhs) protein blocks the activation of dendritic cells (DCs). Previously, we found that coinfection of wild-type HSV-1 with a panel of RNA viruses resulted in a block to DC activation that was attributable to vhs. These observations led us to hypothesize that the vhs-mediated inhibition was dependent on signaling through the RIG-I-like receptor (RLR) signaling pathway. By examining DCs generated from MAVS (IPS-1) knockout (KO) mice, we determined that RLR/MAVS signaling is not essential for the DC response to HSV-1. We also evaluated the requirement for the type I interferon (IFN) signaling pathway in DC activation following infection with HSV-1 and found that stimulation of DCs with wild-type HSV-1 required intact type I IFN signaling for the production of cytokines, whereas the vhs deletion (vhs−) mutant virus activated DCs without the need for exogenous IFN signaling. Comparisons of transcription factor activation in DCs infected with wild-type HSV and the vhs− mutant virus revealed that NF-κB activation was inhibited by vhs in the early phase of the infection. In contrast, IRF3 activation was not influenced by vhs. In these studies, measurement of proinflammatory cytokines and type I IFN release from the infected DCs reflected the activation status of these transcription factors. Taken together, the work presented here (i) describes a novel role for the vhs protein as an inhibitor of the early activation of NF-κB during HSV-1 infection of DCs and (ii) offers a mechanistic explanation of how this protein interferes with DC activation.


PLOS ONE | 2010

The virion host shut-off (vhs) protein blocks a TLR-independent pathway of herpes simplex virus type 1 recognition in human and mouse dendritic cells.

Christopher R. Cotter; Marie L. Nguyen; Jacob S. Yount; Carolina B. López; John A. Blaho; Thomas M. Moran

Molecular pathways underlying the activation of dendritic cells (DCs) in response to Herpes Simplex Virus type 1 (HSV-1) are poorly understood. Removal of the HSV virion host shut-off (vhs) protein relieves a block to DC activation observed during wild-type infection. In this study, we utilized a potent DC stimulatory HSV-1 recombinant virus lacking vhs as a tool to investigate the mechanisms involved in the activation of DCs by HSV-1. We report that the release of pro-inflammatory cytokines by conventional DC (cDC) during HSV-1 infection is triggered by both virus replication-dependent and replication-independent pathways. Interestingly, while vhs is capable of inhibiting the release of cytokines during infection of human and mouse cDCs, the secretion of cytokines by plasmacytoid DC (pDC) is not affected by vhs. These data prompted us to postulate that infection of cDCs by HSV triggers a TLR independent pathway for cDC activation that is susceptible to blockage by the vhs protein. Using cDCs isolated from mice deficient in both the TLR adaptor protein MyD88 and TLR3, we show that HSV-1 and the vhs-deleted virus can activate cDCs independently of TLR signaling. In addition, virion-associated vhs fails to block cDC activation in response to treatment with TLR agonists, but it efficiently blocked cDC activation triggered by the paramyxoviruses Sendai Virus (SeV) and Newcastle Disease Virus (NDV). This block to SeV- and NDV-induced activation of cDC resulted in elevated SeV and NDV viral gene expression indicating that infection with HSV-1 enhances the cells susceptibility to other pathogens through the action of vhs. Our results demonstrate for the first time that a viral protein contained in the tegument of HSV-1 can block the induction of DC activation by TLR-independent pathways of viral recognition.


Journal of Virology | 2007

p53 and hTERT determine sensitivity to viral apoptosis

Marie L. Nguyen; Rachel M. Kraft; Martine Aubert; Edward C. Goodwin; Daniel DiMaio; John A. Blaho

ABSTRACT Apoptosis is a potent host defense against microbes. Most viruses have adapted strategies to counteract this response. Herpes simplex virus (HSV) produces a balance between pro- and antiapoptotic processes during infection. When antiapoptotic signals become limiting, infected cells die through HSV-dependent apoptosis (HDAP). Oncogenic pathways were previously implicated in HDAP susceptibility. Here, we exploited our ability to selectively express all, one, or no oncogenes in the well-defined HeLa cell system to dissect the requirements for HDAP. Human papillomavirus E6 and E7 oncogene expression was inhibited by the E2 viral repressor. Sole expression of E6 mediated HDAP sensitization. Next, two known cellular targets of E6 were independently modulated. This demonstrated that E6 sensitizes HeLa cells to HDAP through hTERT and p53. Given the universality of the apoptotic antiviral response, p53 and telomerase regulation will likely be important for counteracting host defenses in many other viral infections.


Viruses | 2009

Cellular Players in the Herpes Simplex Virus Dependent Apoptosis Balancing Act

Marie L. Nguyen; John A. Blaho

Apoptosis is triggered as an intrinsic defense against numerous viral infections. Almost every virus encodes apoptotic modulators, and the herpes simplex viruses (HSV) are no exception. During HSV infection, there is an intricate balance between pro- and anti-apoptotic factors that delays apoptotic death until the virus has replicated. Perturbations in the apoptotic balance can cause premature cell death and have the potential to dramatically alter the outcome of infection. Recently, certain cellular genes have been shown to regulate sensitivity to HSV-dependent apoptosis. This review summarizes current knowledge of the cellular genes that impact the apoptotic balance during HSV infection.


Apoptosis | 2013

Early passage neonatal and adult keratinocytes are sensitive to apoptosis induced by infection with an ICP27-null mutant of herpes simplex virus 1

Prajakta Pradhan; Marie L. Nguyen

Herpes simplex virus 1 (HSV-1) is a enveloped, double stranded DNA virus that is the causative agent of various diseases including cold sores, encephalitis, and ocular keratitis. Previous research has determined that HSV-1 modulates cellular apoptotic pathways. Apoptosis is triggered in infected cells early in infection; however, later in the infection the apoptotic response is suppressed due to the expression of several viral apoptotic antagonists. This sets us a delicate balance between pro- and anti-apoptotic processes during the lytic phase of infection. Several studies have demonstrated that the apoptotic balance can be shifted during infection of certain cell types, leading to apoptosis of the infected cells (HSV-1-dependent apoptosis). For example, HEp-2 cells infected with an ICP27-null recombinant HSV-1 virus undergo HSV-1-dependent apoptosis. Differences in the sensitivity to HSV-1-dependent apoptosis have been revealed. Although many tumor cells have been found to be highly sensitive to this apoptotic response, with the exception hematological cells, all primary human cells tested prior to this study have been shown to be resistant to HSV-1-dependent apoptosis. Here, we demonstrate that early passage neonatal and adult human keratinocytes, which are usually the first cells to encounter HSV-1 in human infection and support the lytic stage of the life cycle, display membrane blebbing and ballooning, chromatin condensation, caspase activation, and cleavage of cellular caspase substrates when infected with an ICP27-null recombinant of HSV-1. Furthermore, caspase activation is needed for the efficient apoptotic response. These results suggest that apoptotic machinery may be a target for modulating HSV-disease in patients.


Virus Research | 2018

Herpes simplex virus virucidal activity of MST-312 and epigallocatechin gallate

Prajakta Pradhan; Marie L. Nguyen

Herpes Simplex Virus (HSV) is the cause of cold sores, blindness and encephalitis and often leads to recurrent infections. Use of current anti-viral therapies can be limited when drug resistant HSV mutants arise. Thus, novel drugs for the treatment of HSV are needed. Previous research in our laboratory has determined that the telomerase inhibitor, MST-312, interferes with multiple steps of the HSV life cycle. The structure of MST-312 contains moieties related to a natural compound found in green tea, epigallocatechin gallate (EGCG). EGCG has been reported to possess direct virucidal activities toward HSV-1. Here, we tested the virucidal activity of MST-312 and compared it to that of EGCG. Specifically, HSV-1 was exposed to various concentrations of MST-312 or EGCG for time periods between 1 and 60 min and then the ability of the treated virions to form plaques on Vero cells was assessed. When treated for 60 min, 40 μM MST-312 and 0.5-1.0 μM EGCG significantly reduced the number of HSV-1 plaque forming units. The temperature at which treatment occurred impacted the ability of the compounds to limit viral replication. Both compounds were effective when treatment occurred at 37 °C and room temperature (RT). However, no inhibition was seen when virions were treated with MST-312 at 4 °C. 1 min treatment with 2 μM EGCG at RT was sufficient to significantly reduce HSV titers. Higher concentrations of MST-312 were required to inactivate HSV-1 virions compared to EGCG. These data indicate that both EGCG and MST-312 possess direct virucidal properties on HSV-1.


Journal of Virology | 2015

The Telomerase Inhibitor MST-312 Interferes with Multiple Steps in the Herpes Simplex Virus Life Cycle

Jarod Haberichter; Scott Roberts; Imran Abbasi; Phonphanh Dedthanou; Prajakta Pradhan; Marie L. Nguyen

ABSTRACT The life cycle of herpes simplex virus (HSV) has the potential to be further manipulated to yield novel, more effective therapeutic treatments. Recent research has demonstrated that HSV-1 can increase telomerase activity and that expression of the catalytic component of telomerase, telomerase reverse transcriptase (TERT), alters sensitivity to HSV-dependent apoptosis. Telomerase is a cellular enzyme that synthesizes nucleotide repeats at the ends of chromosomes (telomeres), which prevents shortening of the 3′ ends of DNA with each cell division. Once telomeres reach a critical length, cells undergo senescence and apoptosis. Here, we used a cell-permeable, reversible inhibitor of the telomerase enzyme, MST-312, to investigate telomerase activity during HSV infection. Human mammary epithelial cells immortalized through TERT expression and human carcinoma HEp-2 cells were infected with the KOS1.1 strain of HSV-1 in the presence of MST-312. MST-312 treatment reduced the number of cells displaying a cytopathic effect and the accumulation of immediate early and late viral proteins. Moreover, the presence of 20 μM to 100 μM MST-312 during infection led to a 2.5- to 5.5-log10 decrease in viral titers. MST-312 also inhibited the replication of HSV-2 and a recent clinical isolate of HSV-1. Additionally, we determined that MST-312 has the largest impact on viral events that take place prior to 5 h postinfection (hpi). Furthermore, MST-312 treatment inhibited virus replication, as measured by adsorption assays and quantification of genome replication. Together, these findings demonstrate that MST-312 interferes with the HSV life cycle. Further investigation into the mechanism for MST-312 is warranted and may provide novel targets for HSV therapies. IMPORTANCE Herpes simplex virus (HSV) infections can lead to cold sores, blindness, and brain damage. Identification of host factors that are important for the virus life cycle may provide novel targets for HSV antivirals. One such factor, telomerase, is the cellular enzyme that synthesizes DNA repeats at the ends of chromosomes during replication to prevent DNA shortening. In this study, we investigate role of telomerase in HSV infection. The data demonstrate that the telomerase inhibitor MST-312 suppressed HSV replication at multiple steps of viral infection.

Collaboration


Dive into the Marie L. Nguyen's collaboration.

Top Co-Authors

Avatar

John A. Blaho

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Rachel M. Kraft

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Christopher R. Cotter

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne E. Griep

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jacob S. Yount

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Martine Aubert

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Minh M. Nguyen

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Paul F. Lambert

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge