Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John A. Corbin is active.

Publication


Featured researches published by John A. Corbin.


mAbs | 2011

XOMA 052, a potent, high-affinity monoclonal antibody for the treatment of IL-1β-mediated diseases

Alexander Owyang; Hassan Issafras; John A. Corbin; Kiran Ahluwalia; Paul Larsen; Elizabeth Pongo; Masahisa Handa; Arnold Horwitz; Marina Roell; Mary Haak-Frendscho; Linda Masat

Interleukin-1β (IL-1β) is a potent mediator of inflammatory responses and plays a role in the differentiation of a number of lymphoid cells. In several inflammatory and autoimmune diseases, serum levels of IL-1β are elevated and correlate with disease development and severity. The central role of the IL-1 pathway in several diseases has been validated by inhibitors currently in clinical development or approved by the FDA. However, the need to effectively modulate IL-1β-mediated local inflammation with the systemic delivery of an efficacious, safe and convenient drug still exists. To meet these challenges, we developed XOMA 052 (gevokizumab), a potent anti-IL-1β neutralizing antibody that was designed in silico and humanized using Human Engineering™ technology. XOMA 052 has a 300 femtomolar binding affinity for human IL-1β and an in vitro potency in the low picomolar range. XOMA 052 binds to a unique IL-1β epitope where residues critical for binding have been identified. We have previously reported that XOMA 052 is efficacious in vivo in a diet-induced obesity mouse model thought to be driven by low levels of chronic inflammation. We report here that XOMA 052 also reduces acute inflammation in vivo, neutralizing the effect of exogenously administered human IL-1β and blocking peritonitis in a mouse model of acute gout. Based on its high potency, novel mechanism of action, long half-life, and high affinity, XOMA 052 provides a new strategy for the treatment of a number of inflammatory, autoimmune and metabolic diseases in which the role of IL-1β is central to pathogenesis.


Diabetes | 2012

A Fully Human, Allosteric Monoclonal Antibody That Activates the Insulin Receptor and Improves Glycemic Control

Vinay Bhaskar; Ira D. Goldfine; Daniel Bedinger; Angela Lau; Hua F. Kuan; Lisa M. Gross; Masahisa Handa; Betty A. Maddux; Susan R. Watson; Shirley Zhu; Ajay J. Narasimha; Raphael Levy; Lynn Webster; Sujeewa D. Wijesuriya; Naichi Liu; Xiaorong Wu; David Chemla-Vogel; Catarina Tran; Steve R. Lee; Steve Wong; Diane Wilcock; Mark L. White; John A. Corbin

Many patients with diabetes mellitus (both type 1 and type 2) require therapy to maintain normal fasting glucose levels. To develop a novel treatment for these individuals, we used phage display technology to target the insulin receptor (INSR) complexed with insulin and identified a high affinity, allosteric, human monoclonal antibody, XMetA, which mimicked the glucoregulatory, but not the mitogenic, actions of insulin. Biophysical studies with cultured cells expressing human INSR demonstrated that XMetA acted allosterically and did not compete with insulin for binding to its receptor. XMetA was found to function as a specific partial agonist of INSR, eliciting tyrosine phosphorylation of INSR but not the IGF-IR. Although this antibody activated metabolic signaling, leading to enhanced glucose uptake, it neither activated Erk nor induced proliferation of cancer cells. In an insulin resistant, insulinopenic model of diabetes, XMetA markedly reduced elevated fasting blood glucose and normalized glucose tolerance. After 6 weeks, significant improvements in HbA1c, dyslipidemia, and other manifestations of diabetes were observed. It is noteworthy that hypoglycemia and weight gain were not observed during these studies. These studies indicate, therefore, that allosteric monoclonal antibodies have the potential to be novel, ultra-long acting, agents for the regulation of hyperglycemia in diabetes.


Journal of Biological Chemistry | 2010

Kinetic Approach to Pathway Attenuation Using XOMA 052, a Regulatory Therapeutic Antibody That Modulates Interleukin-1β Activity

Marina Roell; Hassan Issafras; Robert J. Bauer; Kristen Michelson; Nerissa Mendoza; Sandra Vanegas; Lisa M. Gross; Paul Larsen; Daniel Bedinger; David J. Bohmann; Genevieve Nonet; Naichi Liu; Steve R. Lee; Masahisa Handa; Seema S. Kantak; Arnold Horwitz; John J. Hunter; Alexander Owyang; Amer M. Mirza; John A. Corbin; Mark L. White

Many therapeutic antibodies act as antagonists to competitively block cellular signaling pathways. We describe here an approach for the therapeutic use of monoclonal antibodies based on context-dependent attenuation to reduce pathologically high activity while allowing homeostatic signaling in biologically important pathways. Such attenuation is achieved by modulating the kinetics of a ligand binding to its various receptors and regulatory proteins rather than by complete blockade of signaling pathways. The anti-interleukin-1β (IL-1β) antibody XOMA 052 is a potent inhibitor of IL-1β activity that reduces the affinity of IL-1β for its signaling receptor and co-receptor but not for its decoy and soluble inhibitory receptors. This mechanism shifts the effective dose response of the cytokine so that the potency of IL-1β bound by XOMA 052 is 20–100-fold lower than that of IL-1β in the absence of antibody in a variety of in vitro cell-based assays. We propose that by decreasing potency of IL-1β while allowing binding to its clearance and inhibitory receptors, XOMA 052 treatment will attenuate IL-1β activity in concert with endogenous regulatory mechanisms. Furthermore, the ability to bind the decoy receptor may reduce the potential for accumulation of antibody·target complexes. Regulatory antibodies like XOMA 052, which selectively modulate signaling pathways, may represent a new mechanistic class of therapeutic antibodies.


Journal of Pharmacology and Experimental Therapeutics | 2013

Detailed Mechanistic Analysis of Gevokizumab, an Allosteric Anti–IL-1β Antibody with Differential Receptor-Modulating Properties

Hassan Issafras; John A. Corbin; Ira D. Goldfine; Marina Roell

Interleukin-1β (IL-1β) is a proinflammatory cytokine that is implicated in many autoinflammatory disorders, but is also important in defense against pathogens. Thus, there is a need to safely and effectively modulate IL-1β activity to reduce pathology while maintaining function. Gevokizumab is a potent anti–IL-1β antibody being developed as a treatment for diseases in which IL-1β has been associated with pathogenesis. Previous data indicated that gevokizumab negatively modulates IL-1β signaling through an allosteric mechanism. Because IL-1β signaling is a complex, dynamic process involving multiple components, it is important to understand the kinetics of IL-1β signaling and the impact of gevokizumab on this process. In the present study, we measured the impact of gevokizumab on the IL-1β system using Schild analysis and surface plasmon resonance studies, both of which demonstrated that gevokizumab decreases the binding affinity of IL-1β for the IL-1 receptor type I (IL-1RI) signaling receptor, but not the IL-1 counter-regulatory decoy receptor (IL-1 receptor type II). Gevokizumab inhibits both the binding of IL-1β to IL-1RI and the subsequent recruitment of IL-1 accessory protein primarily by reducing the association rates of these interactions. Based on this information and recently published structural data, we propose that gevokizumab decreases the association rate for binding of IL-1β to its receptor by altering the electrostatic surface potential of IL-1β, thus reducing the contribution of electrostatic steering to the rapid association rate. These data indicate, therefore, that gevokizumab is a unique inhibitor of IL-1β signaling that may offer an alternative to current therapies for IL-1β–associated autoinflammatory diseases.


Diabetes, Obesity and Metabolism | 2013

XMetA, an allosteric monoclonal antibody to the insulin receptor, improves glycaemic control in mice with diet-induced obesity.

Vinay Bhaskar; Angela Lau; I. D. Goldfine; Ajay J. Narasimha; Lisa M. Gross; Steve Wong; B. Cheung; Mark L. White; John A. Corbin

XMetA, a high‐affinity, fully human monoclonal antibody, allosterically binds to and activates the insulin receptor (INSR). Previously, we found that XMetA normalized fasting glucose and glucose tolerance in insulinopenic mice. To determine whether XMetA is also beneficial for reducing hyperglycaemia due to the insulin resistance of obesity, we have now evaluated XMetA in hyperinsulinemic mice with diet‐induced obesity. XMetA treatment of these mice normalized fasting glucose for 4 weeks without contributing to weight gain. XMetA also corrected glucose tolerance and improved non‐high density lipoprotein cholesterol. These studies indicate, therefore, that monoclonal antibodies that allosterically activate the INSR, such as XMetA, have the potential to be novel agents for the treatment of hyperglycaemia in conditions associated with the insulin resistance of obesity.


mAbs | 2014

Inhibition of insulin receptor function by a human, allosteric monoclonal antibody: A potential new approach for the treatment of hyperinsulinemic hypoglycemia

John A. Corbin; Vinay Bhaskar; Ira D. Goldfine; Hassan Issafras; Daniel Bedinger; Angela Lau; Kristen Michelson; Lisa M. Gross; Betty A. Maddux; Hua F. Kuan; Catarina Tran; Llewelyn Lao; Masahisa Handa; Susan R. Watson; Ajay J. Narasimha; Shirley Zhu; Raphael Levy; Lynn Webster; Sujeewa D. Wijesuriya; Naichi Liu; Xiaorong Wu; David Chemla-Vogel; Steve R. Lee; Steve Wong; Diane Wilcock; Paul Rubin; Mark L. White

Novel therapies are needed for the treatment of hypoglycemia resulting from both endogenous and exogenous hyperinsulinema. To provide a potential new treatment option, we identified XMetD, an allosteric monoclonal antibody to the insulin receptor (INSR) that was isolated from a human antibody phage display library. To selectively obtain antibodies directed at allosteric sites, panning of the phage display library was conducted using the insulin-INSR complex. Studies indicated that XMetD bound to the INSR with nanomolar affinity. Addition of insulin reduced the affinity of XMetD to the INSR by 3-fold, and XMetD reduced the affinity of the INSR for insulin 3-fold. In addition to inhibiting INSR binding, XMetD also inhibited insulin-induced INSR signaling by 20- to 100-fold. These signaling functions included INSR autophosphorylation, Akt activation and glucose transport. These data indicated that XMetD was an allosteric antagonist of the INSR because, in addition to inhibiting the INSR via modulation of binding affinity, it also inhibited the INSR via modulation of signaling efficacy. Intraperitoneal injection of XMetD at 10 mg/kg twice weekly into normal mice induced insulin resistance. When sustained-release insulin implants were placed into normal mice, they developed fasting hypoglycemia in the range of 50 mg/dl. This hypoglycemia was reversed by XMetD treatment. These studies demonstrate that allosteric monoclonal antibodies, such as XMetD, can antagonize INSR signaling both in vitro and in vivo. They also suggest that this class of allosteric monoclonal antibodies has the potential to treat hyperinsulinemic hypoglycemia resulting from conditions such as insulinoma, congenital hyperinsulinism and insulin overdose.


PLOS ONE | 2014

Improved Glucose Metabolism In Vitro and In Vivo by an Allosteric Monoclonal Antibody That Increases Insulin Receptor Binding Affinity

John A. Corbin; Vinay Bhaskar; Ira D. Goldfine; Daniel Bedinger; Angela Lau; Kristen Michelson; Lisa M. Gross; Betty A. Maddux; Hua F. Kuan; Catarina Tran; Llewelyn Lao; Masahisa Handa; Susan R. Watson; Ajay J. Narasimha; Shirley Zhu; Raphael Levy; Lynn Webster; Sujeewa D. Wijesuriya; Naichi Liu; Xiaorong Wu; David Chemla-Vogel; Steve R. Lee; Steve Wong; Diane Wilcock; Mark L. White

Previously we reported studies of XMetA, an agonist antibody to the insulin receptor (INSR). We have now utilized phage display to identify XMetS, a novel monoclonal antibody to the INSR. Biophysical studies demonstrated that XMetS bound to the human and mouse INSR with picomolar affinity. Unlike monoclonal antibody XMetA, XMetS alone had little or no agonist effect on the INSR. However, XMetS was a strong positive allosteric modulator of the INSR that increased the binding affinity for insulin nearly 20-fold. XMetS potentiated insulin-stimulated INSR signaling ∼15-fold or greater including; autophosphorylation of the INSR, phosphorylation of Akt, a major enzyme in the metabolic pathway, and phosphorylation of Erk, a major enzyme in the growth pathway. The enhanced signaling effects of XMetS were more pronounced with Akt than with Erk. In cultured cells, XMetS also enhanced insulin-stimulated glucose transport. In contrast to its effects on the INSR, XMetS did not potentiate IGF-1 activation of the IGF-1 receptor. We studied the effect of XMetS treatment in two mouse models of insulin resistance and diabetes. The first was the diet induced obesity mouse, a hyperinsulinemic, insulin resistant animal, and the second was the multi-low dose streptozotocin/high-fat diet mouse, an insulinopenic, insulin resistant animal. In both models, XMetS normalized fasting blood glucose levels and glucose tolerance. In concert with its ability to potentiate insulin action at the INSR, XMetS reduced insulin and C-peptide levels in both mouse models. XMetS improved the response to exogenous insulin without causing hypoglycemia. These data indicate that an allosteric monoclonal antibody can be generated that markedly enhances the binding affinity of insulin to the INSR. These data also suggest that an INSR monoclonal antibody with these characteristics may have the potential to both improve glucose metabolism in insulinopenic type 2 diabetes mellitus and correct compensatory hyperinsulinism in insulin resistant conditions.


Journal of diabetes science and technology | 2014

Selective Allosteric Antibodies to the Insulin Receptor for the Treatment of Hyperglycemic and Hypoglycemic Disorders

Hassan Issafras; Daniel Bedinger; John A. Corbin; Ira D. Goldfine; Vinay Bhaskar; Mark L. White; Paul Rubin; Patrick J. Scannon

Many therapeutic monoclonal antibodies act as antagonists to receptors by targeting and blocking the natural ligand binding site (orthosteric site). In contrast, the use of antibodies to target receptors at allosteric sites (distinct from the orthosteric site) has not been extensively studied. This approach is especially important in metabolic diseases in which endogenous ligand levels are dysregulated. Herein, we review our investigations of 3 categories of human monoclonal antibodies that bind allosterically to the insulin receptor (INSR) and affect its activity: XMetA, XMetS and XMetD. XMetA directly activates the INSR either alone or in combination with insulin. XMetS, in contrast, does not directly activate the INSR but markedly enhances the receptor’s ability to bind insulin and potentiate insulin signaling. Both XMetA and XMetS are effective in controlling hyperglycemia in mouse models of diabetes. A third allosteric antibody, XMetD, is an inhibitor of INSR signaling. This antibody reverses insulin-induced hypoglycemia in a mouse model of hyperinsulinemia. These studies indicate, therefore, that allosteric antibodies to INSR can modulate its signaling and correct conditions of glucose dysregulation. These studies also raise the possibility that the use of allosteric antibodies can be expanded to other receptors for the treatment of metabolic disorders.


mAbs | 2018

A unique allosteric insulin receptor monoclonal antibody that prevents hypoglycemia in the SUR-1−/− mouse model of KATP hyperinsulinism

Puja Patel; Lawrenshey Charles; John A. Corbin; Ira D. Goldfine; Kirk W. Johnson; Paul Rubin; Diva D. De León

ABSTRACT Loss-of-function mutations of the ß-cell ATP-sensitive potassium channels (KATP) cause the most common and severe form of congenital hyperinsulinism (KATPHI), a disorder of ß-cell function characterized by severe hypoglycemia. Children with KATPHI are typically unresponsive to medical therapy and require pancreatectomy for intractable hypoglycemia. We tested the hypothesis that inhibition of insulin receptor signaling may prevent hypoglycemia in KATPHI. To test this hypothesis, we examined the effect of an antibody allosteric inhibitor of the insulin receptor, XMetD, on fasting plasma glucose in a mouse model of KATPHI (SUR-1− / − mice). SUR-1− / − and wild-type mice received twice weekly intraperitoneal injections of either XMetD or control antibody for 8 wks. Treatment with XMetD significantly decreased insulin sensitivity, and increased hepatic glucose output and fasting plasma glucose. These findings support the potential use of insulin receptor antagonists as a therapeutic approach to control the hypoglycemia in congenital hyperinsulinism.


Obesity | 2016

An Allosteric Antibody to the Leptin Receptor Reduces Body Weight and Reverses the Diabetic Phenotype in the Lepob/Lepob Mouse

Vinay Bhaskar; Ira D. Goldfine; Resi Gerstner; Kristen Michelson; Catarina Tran; Genevieve Nonet; David J. Bohmann; Elizabeth Pongo; Jingsong Zhao; Arnold Horwitz; Toshihiko Takeuchi; Mark P. White; John A. Corbin

Leptin (LEP) deficiency results in major metabolic perturbations, including obesity, dyslipidemia, and diabetes. Although LEP deficiency can be treated with daily injections of a recombinant LEP, generation of an antibody activating the LEP receptor (LEPR) that has both an intrinsically long half‐life and low immunogenicity could be useful in the treatment of this condition.

Collaboration


Dive into the John A. Corbin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark L. White

University of California

View shared research outputs
Top Co-Authors

Avatar

Vinay Bhaskar

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lisa M. Gross

University of California

View shared research outputs
Top Co-Authors

Avatar

Masahisa Handa

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Angela Lau

University of California

View shared research outputs
Top Co-Authors

Avatar

Arnold Horwitz

University of California

View shared research outputs
Top Co-Authors

Avatar

Catarina Tran

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge