Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John A. Crane is active.

Publication


Featured researches published by John A. Crane.


Investigative Radiology | 2011

Noninvasive In vivo assessment of renal tissue elasticity during graded renal ischemia using MR elastography.

Lizette Warner; Meng Yin; Kevin J. Glaser; John A. Woollard; Carolina Amador Carrascal; Michael J. Korsmo; John A. Crane; Richard L. Ehman; Lilach O. Lerman

Objectives:Magnetic resonance elastography (MRE) allows noninvasive assessment of tissue stiffness in vivo. Renal arterial stenosis (RAS), a narrowing of the renal artery, promotes irreversible tissue fibrosis that threatens kidney viability and may elevate tissue stiffness. However, kidney stiffness may also be affected by hemodynamic factors. This study tested the hypothesis that renal blood flow (RBF) is an important determinant of renal stiffness as measured by MRE. Material and Methods:In 6 anesthetized pigs MRE studies were performed to determine cortical and medullary elasticity during acute graded decreases in RBF (by 20%, 40%, 60%, 80%, and 100% of baseline) achieved by a vascular occluder. Three sham-operated swine served as time control. Additional pigs were studied with MRE 6 weeks after induction of chronic unilateral RAS (n = 6) or control (n = 3). Kidney fibrosis was subsequently evaluated histologically by trichrome staining. Results:During acute RAS the stenotic cortex stiffness decreased (from 7.4 ± 0.3 to 4.8 ± 0.6 kPa, P = 0.02 vs. baseline) as RBF decreased. Furthermore, in pigs with chronic RAS (80% ± 5.4% stenosis) in which RBF was decreased by 60% ± 14% compared with controls, cortical stiffness was not significantly different from normal (7.4 ± 0.3 vs. 7.6 ± 0.3 kPa, P = 0.3), despite histologic evidence of renal tissue fibrosis. Conclusion:Hemodynamic variables modulate kidney stiffness measured by MRE and may mask the presence of fibrosis. These results suggest that kidney turgor should be considered during interpretation of elasticity assessments.


Hypertension | 2011

Blood Oxygen Level–Dependent Magnetic Resonance Imaging Identifies Cortical Hypoxia in Severe Renovascular Disease

Monika L. Gloviczki; James F. Glockner; John A. Crane; Michael A. McKusick; Sanjay Misra; Joseph P. Grande; Lilach O. Lerman; Stephen C. Textor

Atherosclerotic renal artery stenosis has a range of manifestations depending on the severity of vascular occlusion. The aim of this study was to examine whether exceeding the limits of adaptation to reduced blood flow ultimately leads to tissue hypoxia, as determined by blood oxygen level dependent MRI. We compared 3 groups of hypertensive patients, 24 with essential hypertension, 13 with “moderate” (Doppler velocities 200–384 cm/s), and 17 with “severe” atherosclerotic renal artery stenosis (ARAS; velocities >384 cm/s and loss of functional renal tissue). Cortical and medullary blood flows and volumes were determined by multidetector computed tomography. Poststenotic kidney size and blood flow were reduced with ARAS, and tissue perfusion fell in the most severe lesions. Tissue medullary deoxyhemoglobin, as reflected by R2* values, was higher as compared with the cortex for all of the groups and did not differ between subjects with renal artery lesions and essential hypertension. By contrast, cortical R2* levels were elevated for severe ARAS (21.6±9.4 per second) as compared with either essential hypertension (17.8±2.3 per second; P<0.01) or moderate ARAS (15.7±2.1 per second; P<0.01). Changes in medullary R2* after furosemide administration tended to be blunted in severe ARAS as compared with unaffected (contralateral) kidneys. These results demonstrate that severe vascular occlusion overwhelms the capacity of the kidney to adapt to reduced blood flow, manifest as overt cortical hypoxia as measured by blood oxygen level–dependent MRI. The level of cortical hypoxia is out of proportion to the medulla and may provide a marker to identify irreversible parenchymal injury.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2012

Transition From Obesity to Metabolic Syndrome Is Associated With Altered Myocardial Autophagy and Apoptosis

Zi Lun Li; John R. Woollard; Behzad Ebrahimi; John A. Crane; Kyra L. Jordan; Amir Lerman; Shen Ming Wang; Lilach O. Lerman

Objective—Transition from obesity to metabolic-syndrome (MetS) promotes cardiovascular diseases, but the underlying cardiac pathophysiological mechanisms are incompletely understood. We tested the hypothesis that development of insulin resistance and MetS is associated with impaired myocardial cellular turnover. Methods and Results—MetS-prone Ossabaw pigs were randomized to 10 weeks of standard chow (lean) or to 10 (obese) or 14 (MetS) weeks of atherogenic diet (n=6 each). Cardiac structure, function, and myocardial oxygenation were assessed by multidetector computed-tomography and Blood Oxygen Level-Dependent–MRI, the microcirculation with microcomputed-tomography, and injury mechanisms by immunoblotting and histology. Both obese and MetS showed obesity and dyslipidemia, whereas only MetS showed insulin resistance. Cardiac output and myocardial perfusion increased only in MetS, yet Blood Oxygen Level-Dependent–MRI showed hypoxia. Inflammation, oxidative stress, mitochondrial dysfunction, and fibrosis also increased in both obese and MetS, but more pronouncedly in MetS. Furthermore, autophagy in MetS was decreased and accompanied by marked apoptosis. Conclusion—Development of insulin resistance characterizing a transition from obesity to MetS is associated with progressive changes of myocardial autophagy, apoptosis, inflammation, mitochondrial dysfunction, and fibrosis. Restoring myocardial cellular turnover may represent a novel therapeutic target for preserving myocardial structure and function in obesity and MetS.


Circulation-cardiovascular Interventions | 2013

Stent Revascularization Restores Cortical Blood Flow and Reverses Tissue Hypoxia in Atherosclerotic Renal Artery Stenosis but Fails to Reverse Inflammatory Pathways or Glomerular Filtration Rate

Ahmed Saad; Sandra M. Herrmann; John A. Crane; James F. Glockner; Michael A. McKusick; Sanjay Misra; Alfonso Eirin; Behzad Ebrahimi; Lilach O. Lerman; Stephen C. Textor

Background—Atherosclerotic renal artery stenosis (ARAS) is known to reduce renal blood flow, glomerular filtration rate (GFR) and amplify kidney hypoxia, but the relationships between these factors and tubulointerstitial injury in the poststenotic kidney are poorly understood. The purpose of this study was to examine the effect of renal revascularization in ARAS on renal tissue hypoxia and renal injury. Methods and Results—Inpatient studies were performed in patients with ARAS (n=17; >60% occlusion) before and 3 months after stent revascularization, or in patients with essential hypertension (n=32), during fixed Na+ intake and angiotensin converting enzyme/angiotensin receptors blockers Rx. Single kidney cortical, medullary perfusion, and renal blood flow were measured using multidetector computed tomography, and GFR by iothalamate clearance. Tissue deoxyhemoglobin levels (R2*) were measured by blood oxygen level–dependent MRI at 3T, as was fractional kidney hypoxia (percentage of axial area with R2*>30/s). In addition, we measured renal vein levels of neutrophil gelatinase–associated lipocalin, monocyte chemoattractant protein-1, and tumor necrosis factor-&agr;. Pre-stent single kidney renal blood flow, perfusion, and GFR were reduced in the poststenotic kidney. Renal vein neutrophil gelatinase–associated lipocalin, tumor necrosis factor-&agr;, monocyte chemoattractant protein-1, and fractional hypoxia were higher in untreated ARAS than in essential hypertension. After stent revascularization, fractional hypoxia fell (P<0.002) with increased cortical perfusion and blood flow, whereas GFR and neutrophil gelatinase–associated lipocalin, monocyte chemoattractant protein-1, and tumor necrosis factor-&agr; remained unchanged. Conclusions—These data demonstrate that despite reversal of renal hypoxia and partial restoration of renal blood flow after revascularization, inflammatory cytokines and injury biomarkers remained elevated and GFR failed to recover in ARAS. Restoration of vessel patency alone failed to reverse tubulointerstitial damage and partly explains the limited clinical benefit of renal stenting. These results identify potential therapeutic targets for recovery of kidney function in renovascular disease.


Radiology | 2013

Human Renovascular Disease: Estimating Fractional Tissue Hypoxia to Analyze Blood Oxygen Level–dependent MR

Ahmed Saad; John A. Crane; James F. Glockner; Sandra M. Herrmann; Hannah Friedman; Behzad Ebrahimi; Lilach O. Lerman; Stephen C. Textor

PURPOSE To test the hypothesis that fractional kidney hypoxia, measured by using blood oxygen level-dependent (BOLD) magnetic resonance (MR) imaging, correlates with renal blood flow (RBF), tissue perfusion, and glomerular filtration rate (GFR) in patients with atherosclerotic renal artery stenosis (RAS) better than regionally selected region of interest-based methods. MATERIALS AND METHODS The study was approved by the institutional review board according to a HIPAA-compliant protocol, with written informed consent. BOLD MR imaging was performed in 40 patients with atherosclerotic RAS (age range, 51-83 years; 22 men, 18 women) and 32 patients with essential hypertension (EH) (age range, 26-85 years; 19 men, 13 women) during sodium intake and renin-angiotensin blockade. Fractional kidney hypoxia (percentage of entire axial image section with R2* above 30 sec(-1)) and conventional regional estimates of cortical and medullary R2* levels were measured. Stenotic and nonstenotic contralateral kidneys were compared for volume, tissue perfusion, and blood flow measured with multidetector computed tomography. Statistical analysis was performed (paired and nonpaired t tests, linear regression analysis). RESULTS Stenotic RBF was reduced compared with RBF of contralateral kidneys (225.2 mL/min vs 348 mL/min, P = .0003). Medullary perfusion in atherosclerotic RAS patients was lower than in EH patients (1.07 mL/min per milliliter of tissue vs 1.3 mL/min per milliliter of tissue, P = .009). While observer-selected cortical R2* (18.9 sec(-1) [stenosis] vs 18.5 sec(-1) [EH], P = .07) did not differ, fractional kidney hypoxia was higher in stenotic kidneys compared with kidneys with EH (17.4% vs 9.6%, P < .0001) and contralateral kidneys (7.2%, P < .0001). Fractional hypoxia correlated inversely with blood flow (r = -0.34), perfusion (r = -0.3), and GFR (r = -0.32). CONCLUSION Fractional tissue hypoxia rather than cortical or medullary R2* values used to assess renal BOLD MR imaging demonstrated a direct relationship to chronically reduced blood flow and GFR.


Investigative Radiology | 2013

Magnetic resonance elastography noninvasively detects in vivo renal medullary fibrosis secondary to swine renal artery stenosis

Michael J. Korsmo; Behzad Ebrahimi; Alfonso Eirin; John R. Woollard; James D. Krier; John A. Crane; Lizette Warner; Kevin J. Glaser; Roger C. Grimm; Richard L. Ehman; Lilach O. Lerman

ObjectivesMagnetic resonance elastography (MRE) can noninvasively sample tissue stiffness in vivo. Renal fibrosis secondary to renal artery stenosis (RAS), which is aggravated in atherosclerotic RAS (ARAS), may increase its stiffness. An increase in cortical stiffness in vivo can be masked by intrinsic hemodynamic determinants, whereas renal medullary stiffness is less dependent on renal hemodynamics. Therefore, this study tested the hypothesis that MRE-determined medullary stiffness would correspond to the histological degree of medullary fibrosis in stenotic kidneys in RAS and detect its exacerbation in ARAS. Materials and MethodsSeventeen pigs were studied 10 weeks after induction of unilateral RAS (n = 6), ARAS (n = 5), or sham (n = 6). Stiffness of the cortex and the medulla was determined through 3-dimensional MRE, and renal perfusion and function were determined using multidetector computed tomography. Kidney fibrosis was subsequently assessed ex vivo using the Masson trichrome staining. ResultsRenal stenotic cortex and medulla were significantly more fibrotic in RAS and ARAS compared with healthy kidney. However, MRE detected increased stiffness in RAS compared with the healthy kidney (12.7 ± 0.41 kPa vs 10.7 ± 0.18 kPa; P = 0.004) only in the medulla, which was further increased in ARAS (16.6 ± 1.3 kPa; P = 0.017 vs RAS). Magnetic resonance elastography–derived medullary, but not cortical, stiffness significantly correlated with histological degree of fibrosis, although cortical and medullary fibroses were correlated. Renal blood flow and function were similarly decreased in RAS and ARAS compared with the healthy kidney. ConclusionsNoninvasive 3-dimensional MRE detects increased renal medullary stiffness in RAS and ARAS in vivo, which correlates with its fibrosis ex vivo and may also reflect cortical fibrosis. Hence, MRE-derived medullary stiffness can be potentially useful in detecting renal fibrosis and track disease progression.


Circulation-cardiovascular Interventions | 2012

Changes in Glomerular Filtration Rate After Renal Revascularization Correlate With Microvascular Hemodynamics and Inflammation in Swine Renal Artery Stenosis

Alfonso Eirin; Behzad Ebrahimi; Xin Zhang; Xiang Yang Zhu; Hui Tang; John A. Crane; Amir Lerman; Stephen C. Textor; Lilach O. Lerman

Background—The selection of patients with renal artery stenosis (RAS) likely to improve glomerular filtration rate (GFR) after percutaneous transluminal renal angioplasty is difficult. We examined basal hemodynamic and inflammatory factors linked to improved stenotic kidney (STK) function after percutaneous transluminal renal angioplasty in swine RAS. Methods and Results—Fifteen pigs after 6 weeks of hemodynamically significant RAS were studied before and 4 weeks after technically successful percutaneous transluminal renal angioplasty+stenting. STK and contralateral kidney hemodynamics and function were evaluated by multidetector computed-tomography before and after acetylcholine challenge. Single-kidney deoxyhemoglobin (R2*, reciprocal to blood relaxation) and energy-dependent tubular function were assessed using blood-oxygen-level–dependent magnetic resonance imaging before and after furosemide. Baseline renal vein and inferior vena cava levels of inflammatory markers were measured and their gradient and net release calculated. Baseline parameters were compared with normal (n=7) and sham-RAS (n=7) pigs and correlated with the change in STK-GFR after revascularization (&Dgr;GFR). Four weeks after percutaneous transluminal, renal angioplasty blood pressure was normalized in all animals, but STK-GFR improved in 10 of 15 (&Dgr;GFR =+22.0±8.5 mL/min). &Dgr;GFR correlated inversely with basal STK-GFR, renal release of inflammatory markers, and medullary R2* response to furosemide, but directly with GFR response to acetylcholine. Basal contralateral kidney GFR correlated directly with &Dgr;GFR. Conclusions—Low basal STK-GFR with preserved response to acetylcholine may predict benefit from revascularization in RAS, whereas renal inflammation and robust STK-R2* responses to furosemide (possibly reflecting avid tubular oxygen consumption) are associated with less favorable outcomes. These tools may be useful for identification of patients likely to improve renal function after revascularization.


American Journal of Physiology-renal Physiology | 2013

Obesity-metabolic derangement preserves hemodynamics but promotes intrarenal adiposity and macrophage infiltration in swine renovascular disease.

Xin Zhang; Zi Lun Li; John R. Woollard; Alfonso Eirin; Behzad Ebrahimi; John A. Crane; Xiang Yang Zhu; Aditya S. Pawar; James D. Krier; Kyra L. Jordan; Hui Tang; Stephen C. Textor; Amir Lerman; Lilach O. Lerman

Obesity-metabolic disorders (ObM) often accompany renal artery stenosis (RAS). We hypothesized that the coexistence of ObM and RAS magnifies inflammation and microvascular remodeling in the stenotic kidney (STK) and aggravates renal scarring. Twenty-eight obesity-prone Ossabaw pigs were studied after 16 wk of a high-fat/high-fructose diet or standard chow including ObM-sham, ObM-RAS, Lean-RAS, or Lean-sham (normal control) groups. Single-kidney renal blood flow (RBF) and glomerular filtration rate (GFR) were assessed by multidetector computed tomography (CT), renal oxygenation and tubular transport capability by blood-oxygen-level-dependent MRI, and microcirculation by micro-CT for vessel density, and Western blotting for protein expressions of angiogenic factors (VEGF/FLK-1). Renal vein and inferior vena cava levels of inflammatory cytokines were measured to evaluate systemic and kidney inflammation. Macrophage (MØ) infiltration and subpopulations, fat deposition in the kidney, and inflammation in perirenal and abdominal fat were also examined. GFR and RBF were decreased in Lean-STK but relatively preserved in ObM-STK. However, ObM-STK showed impaired tubular transport function, suppressed microcirculation, and stimulated glomerulosclerosis. ObM diet interacted with RAS to blunt angiogenesis in the STK, facilitated the release of inflammatory cytokines, and led to greater oxidative stress than Lean-STK. The ObM diet also induced fat deposition in the kidney and infiltration of proinflammatory M1-MØ, as also in perirenal and abdominal fat. Coexistence of ObM and RAS amplifies renal inflammation, aggravates microvascular remodeling, and accelerates glomerulosclerosis. Increased adiposity and MØ-accentuated inflammation induced by an ObM diet may contribute to structural injury in the post-STK kidney.


American Journal of Physiology-renal Physiology | 2010

Early atherosclerosis aggravates the effect of renal artery stenosis on the swine kidney

Victor H. Urbieta-Caceres; Ronit Lavi; Xiang Yang Zhu; John A. Crane; Stephen C. Textor; Amir Lerman; Lilach O. Lerman

Atherosclerotic renal artery stenosis (ARAS) is increasingly identified in patients with end-stage renal disease. Renal function in ARAS patients deteriorates more frequently than in nonatherosclerotic renal artery stenosis (RAS). This study was designed to test the hypothesis that atherosclerosis modifies the relationship between single-kidney hemodynamics and function and the severity of stenosis. The degree of unilateral RAS in domestic pigs (4 normal, 26 RAS, and 22 ARAS) was correlated with renal function and hemodynamics evaluated by 64-slice multidetector computerized tomography before and after endothelium-dependent challenge with ACh. The degree of stenosis and increase in mean arterial pressure were similar in RAS and ARAS. Stenotic single-kidney volume, blood flow, glomerular filtration rate, and cortical perfusion were lower than normal in both RAS and ARAS, but only in RAS correlated inversely with increasing degree of stenosis (r = -0.62, r = -0.49, r = -0.51, and r = -0.46, respectively, P < 0.05 for all). Basal tubular fluid concentration capacity and stenotic cortical perfusion response to ACh were both blunted only in ARAS. This study shows that atherosclerosis modulates the impact of a stenosis in the renal artery on stenotic kidney hemodynamics, function, and tubular dynamics. These observations underscore the direct intrarenal effect of atherogenic factors on the kidneys.


Journal of Hypertension | 2014

Mitochondrial targeted peptides attenuate residual myocardial damage after reversal of experimental renovascular hypertension.

Alfonso Eirin; Barbara J. Williams; Behzad Ebrahimi; Xin Zhang; John A. Crane; Amir Lerman; Stephen C. Textor; Lilach O. Lerman

Background: Renovascular hypertension (RVHT) increases cardiovascular morbidity and mortality. Renal revascularization with percutaneous transluminal renal angioplasty and stenting (PTRS) may reverse RVHT but may not fully regress cardiac remodeling and damage, possibly due to persistent myocardial insults. Bendavia is a mitochondrial targeted peptide that reduces ischemic cardiomyopathy by improving mitochondrial function. However, its potential for attenuating residual myocardial damage after reversal of RVHT has not been explored. We hypothesized that treatment with Bendavia as an adjunct to PTRS would improve cardiac function and oxygenation, and decrease myocardial injury in swine RVHT. Methods and results: After 6 weeks of RVHT (unilateral renal artery stenosis) or control, pigs underwent PTRS (or sham), with adjunct continuous infusion of Bendavia (0.05 mg/kg intravenously, 30 min before to 3.5 h after PTRS) or vehicle (n = 7 each). Four weeks later, systolic and diastolic function were assessed by multidetector computed tomography, myocardial oxygenation by blood oxygen level-dependent MRI, and myocardial morphology, apoptosis, mitochondrial biogenesis, and fibrosis evaluated ex vivo. PTRS restored blood pressure in both groups, yet E/A ratio remained decreased. Myocardial oxygenation and mitochondrial biogenesis improved, and myocardial inflammation, oxidative stress, and fibrosis normalized in association with improvement in diastolic function in RVHT + PTRS + Bendavia animals. Conclusion: Adjunct Bendavia during PTRS in swine RVHT improved diastolic function and oxygenation and reversed myocardial tissue damage. This approach may allow a novel strategy for preservation of cardiac function and structure in RVHT.

Collaboration


Dive into the John A. Crane's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge