Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John A. Knaff is active.

Publication


Featured researches published by John A. Knaff.


Weather and Forecasting | 2005

Further Improvements to the Statistical Hurricane Intensity Prediction Scheme (SHIPS)

Mark DeMaria; Michelle Mainelli; Lynn K. Shay; John A. Knaff; John Kaplan

Modifications to the Atlantic and east Pacific versions of the operational Statistical Hurricane Intensity Prediction Scheme (SHIPS) for each year from 1997 to 2003 are described. Major changes include the addition of a method to account for the storm decay over land in 2000, the extension of the forecasts from 3 to 5 days in 2001, and the use of an operational global model for the evaluation of the atmospheric predictors instead of a simple dry-adiabatic model beginning in 2001. A verification of the SHIPS operational intensity forecasts is presented. Results show that the 1997–2003 SHIPS forecasts had statistically significant skill (relative to climatology and persistence) out to 72 h in the Atlantic, and at 48 and 72 h in the east Pacific. The inclusion of the land effects reduced the intensity errors by up to 15% in the Atlantic, and up to 3% in the east Pacific, primarily for the shorter-range forecasts. The inclusion of land effects did not significantly degrade the forecasts at any time period. Results also showed that the 4–5-day forecasts that began in 2001 did not have skill in the Atlantic, but had some skill in the east Pacific. An experimental version of SHIPS that included satellite observations was tested during the 2002 and 2003 seasons. New predictors included brightness temperature information from Geostationary Operational Environmental Satellite (GOES) channel 4 (10.7 m) imagery, and oceanic heat content (OHC) estimates inferred from satellite altimetry observations. The OHC estimates were only available for the Atlantic basin. The GOES data significantly improved the east Pacific forecasts by up to 7% at 12–72 h. The combination of GOES and satellite altimetry improved the Atlantic forecasts by up to 3.5% through 72 h for those storms west of 50°W.


Climatic Change | 1999

Atlantic Basin Hurricanes: Indices of Climatic Changes

Christopher W. Landsea; Roger A. Pielke; Alberto M. Mestas-Nuñez; John A. Knaff

Accurate records of basinwide Atlantic and U.S. landfalling hurricanes extend back to the mid 1940s and the turn of the century, respectively, as a result of aircraft reconnaissance and instrumented weather stations along the U.S. coasts. Such long-term records are not exceeded elsewhere in the tropics. The Atlantic hurricanes, U.S. landfalling hurricanes and U.S. normalized damage time series are examined for interannual trends and multidecadal variability. It is found that only weak linear trends can be ascribed to the hurricane activity and that multidecadal variability is more characteristic of the region. Various environmental factors including Caribbean sea level pressures and 200mb zonal winds, the stratospheric Quasi-Biennial Oscillation, the El Niño-Southern Oscillation, African West Sahel rainfall and Atlantic sea surface temperatures, are analyzed for interannual links to the Atlantic hurricane activity. All show significant, concurrent relationships to the frequency, intensity and duration of Atlantic hurricanes. Additionally, variations in the El Niño-Southern Oscillation are significantly linked to changes in U.S. tropical cyclone-caused damages. Finally, much of the multidecadal hurricane activity can be linked to the Atlantic Multidecadal Mode - an empirical orthogonal function pattern derived from a global sea surface temperature record. Such linkages may allow for prediction of Atlantic hurricane activity on a multidecadal basis. These results are placed into the context of climate change and natural hazards policy.


Weather and Forecasting | 2010

A Revised Tropical Cyclone Rapid Intensification Index for the Atlantic and Eastern North Pacific Basins

John Kaplan; Mark DeMaria; John A. Knaff

Abstract A revised rapid intensity index (RII) is developed for the Atlantic and eastern North Pacific basins. The RII uses large-scale predictors from the Statistical Hurricane Intensity Prediction Scheme (SHIPS) to estimate the probability of rapid intensification (RI) over the succeeding 24 h utilizing linear discriminant analysis. Separate versions of the RII are developed for the 25-, 30-, and 35-kt RI thresholds, which represent the 90th (88th), 94th (92nd), and 97th (94th) percentiles of 24-h overwater intensity changes of tropical and subtropical cyclones in the Atlantic (eastern North Pacific) basins from 1989 to 2006, respectively. The revised RII became operational at the NHC prior to the 2008 hurricane season. The relative importance of the individual RI predictors is shown to differ between the two basins. Specifically, the previous 12-h intensity change, upper-level divergence, and vertical shear have the highest weights for the Atlantic basin, while the previous 12-h intensity change, symme...


Monthly Weather Review | 2006

Effects of Vertical Wind Shear and Storm Motion on Tropical Cyclone Rainfall Asymmetries Deduced from TRMM

Shuyi S. Chen; John A. Knaff; Frank D. Marks

Abstract Vertical wind shear and storm motion are two of the most important factors contributing to rainfall asymmetries in tropical cyclones (TCs). Global TC rainfall structure, in terms of azimuthal distribution and asymmetries relative to storm motion, has been previously described using the Tropical Rainfall Measuring Mission Microwave Imager rainfall estimates. The mean TC rainfall distribution and the wavenumber-1 asymmetry vary with storm intensity and geographical location among the six oceanic basins. This study uses a similar approach to investigate the relationship between the structure of TC rainfall and the environmental flow by computing the rainfall asymmetry relative to the vertical wind shear. The environmental vertical wind shear is defined as the difference between the mean wind vectors of the 200- and 850-hPa levels over an outer region extending from the radius of 200–800 km around the storm center. The wavenumber-1 maximum rainfall asymmetry is downshear left (right) in the Northern ...


Weather and Forecasting | 2001

A Tropical Cyclone Genesis Parameter for the Tropical Atlantic

Mark DeMaria; John A. Knaff; Bernadette H. Connell

Abstract A parameter to evaluate the potential for tropical cyclone formation (genesis) in the North Atlantic between Africa and the Caribbean islands is developed. Climatologically, this region is the source of about 40% of the Atlantic basin tropical cyclones but roughly 60% of the major hurricanes. The genesis parameter is the product of appropriately scaled 5-day running mean vertical shear, vertical instability, and midlevel moisture variables. The instability and shear variables are calculated from operational NCEP analyses, and the midlevel moisture variable is determined from cloud-cleared GOES water vapor imagery. The average shear and instability variables from 1991 to 1999 and moisture variable from 1995 to 1999 indicate that tropical cyclone formation in the early part of the season is limited by the vertical instability and midlevel moisture. Formation at the end of the season is limited by the vertical shear. On average, there is only a short period from mid-July to mid-October when all thre...


Weather and Forecasting | 2007

Reexamination of Tropical Cyclone Wind–Pressure Relationships

John A. Knaff; Raymond M. Zehr

Abstract Tropical cyclone wind–pressure relationships are reexamined using 15 yr of minimum sea level pressure estimates, numerical analysis fields, and best-track intensities. Minimum sea level pressure is estimated from aircraft reconnaissance or measured from dropwindsondes, and maximum wind speeds are interpolated from best-track maximum 1-min wind speed estimates. The aircraft data were collected primarily in the Atlantic but also include eastern and central North Pacific cases. Global numerical analyses were used to estimate tropical cyclone size and environmental pressure associated with each observation. Using this dataset (3801 points), the influences of latitude, tropical cyclone size, environmental pressure, and intensification trend on the tropical cyclone wind–pressure relationships were examined. Findings suggest that latitude, size, and environmental pressure, which all can be quantified in an operational and postanalysis setting, are related to predictable changes in the wind–pressure rela...


Bulletin of the American Meteorological Society | 2000

How Much Skill Was There in Forecasting the Very Strong 1997–98 El Niño?

Christopher W. Landsea; John A. Knaff

Abstract The very strong 1997–98 El Nino was the first major event in which numerous forecasting groups participated in its real–time prediction. A previously developed simple statistical tool–the El Nino–Southern Oscillation Climatology and Persistence (ENSO–CLIPER) model–is utilized as a baseline for determination of skill in forecasting this event. Twelve statistical and dynamical models were available in real time for evaluation. Some of the models were able to outperform ENSO–CLIPER in predicting either the onset or the decay of the 1997–98 El Nino, but none were successful at both for a medium–range two season (6–8 months) lead time. There were no models, including ENSO–CLIPER, able to anticipate even one–half of the actual amplitude of the El Ninos peak at medium–range (6–11 months) lead. In addition, none of the models showed skill (i.e., lower root–mean–square error than ENSO–CLIPER) at the zero season (0–2 months) through the two season (6–8 months) lead times. No dynamical model and only two o...


Journal of Climate | 1997

Implications of Summertime Sea Level Pressure Anomalies in the Tropical Atlantic Region

John A. Knaff

This study explores the inverse relationship between sea level pressure and tropical cyclones in the tropical Atlantic (TA). Upper-air observations, the National Centers for Environmental Prediction (formerly the National Meteorological Center)/National Center for Atmospheric Research (NCEP/NCAR) reanalysis, and regional SSTs provide clues as to the physics of this relationship using composite and regression methods. Stratification of upper-air data by sea level pressure anomalies in the TA yields several interesting results, including anomalously high (low) pressure association with relatively dry (moist) middle levels, cooler (warmer) midlevel temperatures, and stronger (weaker) 200‐850-mb vertical wind shears. The configuration of these composite wind differences suggests that higher summertime pressure in the TA is associated with an anomalously strong tropical upper tropospheric trough (TUTT) circulation. The observations show systematic association between the composite moisture, temperature, and wind differences. Studies of longwave sensitivity using a two stream model show that the moisture field dominates the longwave radiative cooling; hence, dry midlevels enhance cooling of the atmosphere. The effects of SST variations and tropical cyclones on TA pressure anomalies suggest that summertime pressure in this region is strongly influenced by additional (unresolved) climate forcings. These findings lead to a hypothesis that explains both the persistent nature of the summertime pressure (in the TA) as well as how variations of this pressure modulate the TUTT circulation strength. The hypothesis states that positive feedbacks operate between pressure/subsidence variations, midlevel moisture, and differential longwave radiative cooling that affects local baroclinicity (i.e., TUTT). When pressures are anomalously high, subsidence is greater and middle levels are dryer, resulting in increased atmospheric cooling to space and increased baroclinicity. Hence, pressure-related variations of both the midlevel moisture field and the TUTT circulation result in modulations of the upper-level winds and vertical wind shears in the TA. These, in turn, are found to be the primary cause of the observed pressure‐tropical cyclone relationship; higher tropical Atlantic pressure results in an environment that is dryer and more sheared and, thus, less favorable for tropical cyclone formation and development.


Bulletin of the American Meteorological Society | 2014

Is Tropical Cyclone Intensity Guidance Improving

Mark DeMaria; Charles R. Sampson; John A. Knaff; Kate D. Musgrave

The mean absolute error of the official tropical cyclone (TC) intensity forecasts from the National Hurricane Center (NHC) and the Joint Typhoon Warning Center (JTWC) shows limited evidence of improvement over the past two decades. This result has sometimes erroneously been used to conclude that little or no progress has been made in the TC intensity guidance models. This article documents statistically significant improvements in operational TC intensity guidance over the past 24 years (1989–2012) in four tropical cyclone basins (Atlantic, eastern North Pacific, western North Pacific, and Southern Hemisphere). Errors from the best available model have decreased at 1%–2% yr−1 at 24–72 h, with faster improvement rates at 96 and 120 h. Although these rates are only about one-third to one-half of the rates of reduction of the track forecast models, most are statistically significant at the 95% level. These error reductions resulted from improvements in statistical–dynamical intensity models and consensus tec...


Weather and Forecasting | 2003

Statistical, 5-Day Tropical Cyclone Intensity Forecasts Derived from Climatology and Persistence

John A. Knaff; Mark DeMaria; Charles R. Sampson; James M. Gross

Abstract Tropical cyclone track forecasting has improved recently to the point at which extending the official forecasts of both track and intensity to 5 days is being considered at the National Hurricane Center and the Joint Typhoon Warning Center. Current verification procedures at both of these operational centers utilize a suite of control models, derived from the “climatology” and “persistence” techniques, that make forecasts out to 3 days. To evaluate and verify 5-day forecasts, the current suite of control forecasts needs to be redeveloped to extend the forecasts from 72 to 120 h. This paper describes the development of 5-day tropical cyclone intensity forecast models derived from climatology and persistence for the Atlantic, the eastern North Pacific, and the western North Pacific Oceans. Results using independent input data show that these new models possess similar error and bias characteristics when compared with their predecessors in the North Atlantic and eastern North Pacific but that the we...

Collaboration


Dive into the John A. Knaff's collaboration.

Top Co-Authors

Avatar

Mark DeMaria

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Charles R. Sampson

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

Roger A. Pielke

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Thomas N. Chase

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher W. Landsea

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James P. Kossin

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

John Kaplan

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Christopher S. Velden

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge