Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John Kaplan is active.

Publication


Featured researches published by John Kaplan.


Weather and Forecasting | 2005

Further Improvements to the Statistical Hurricane Intensity Prediction Scheme (SHIPS)

Mark DeMaria; Michelle Mainelli; Lynn K. Shay; John A. Knaff; John Kaplan

Modifications to the Atlantic and east Pacific versions of the operational Statistical Hurricane Intensity Prediction Scheme (SHIPS) for each year from 1997 to 2003 are described. Major changes include the addition of a method to account for the storm decay over land in 2000, the extension of the forecasts from 3 to 5 days in 2001, and the use of an operational global model for the evaluation of the atmospheric predictors instead of a simple dry-adiabatic model beginning in 2001. A verification of the SHIPS operational intensity forecasts is presented. Results show that the 1997–2003 SHIPS forecasts had statistically significant skill (relative to climatology and persistence) out to 72 h in the Atlantic, and at 48 and 72 h in the east Pacific. The inclusion of the land effects reduced the intensity errors by up to 15% in the Atlantic, and up to 3% in the east Pacific, primarily for the shorter-range forecasts. The inclusion of land effects did not significantly degrade the forecasts at any time period. Results also showed that the 4–5-day forecasts that began in 2001 did not have skill in the Atlantic, but had some skill in the east Pacific. An experimental version of SHIPS that included satellite observations was tested during the 2002 and 2003 seasons. New predictors included brightness temperature information from Geostationary Operational Environmental Satellite (GOES) channel 4 (10.7 m) imagery, and oceanic heat content (OHC) estimates inferred from satellite altimetry observations. The OHC estimates were only available for the Atlantic basin. The GOES data significantly improved the east Pacific forecasts by up to 7% at 12–72 h. The combination of GOES and satellite altimetry improved the Atlantic forecasts by up to 3.5% through 72 h for those storms west of 50°W.


Weather and Forecasting | 2003

Large-Scale Characteristics of Rapidly Intensifying Tropical Cyclones in the North Atlantic Basin

John Kaplan; Mark DeMaria

The National Hurricane Center (NHC) and Statistical Hurricane Intensity Prediction Scheme (SHIPS) databases are employed to examine the large-scale characteristics of rapidly intensifying Atlantic basin tropical cyclones. In this study, rapid intensification (RI) is defined as approximately the 95th percentile of over-water 24-h intensity changes of Atlantic basin tropical cyclones that developed from 1989 to 2000. This equates to a maximum sustained surface wind speed increase of 15.4 m s 21 (30 kt) over a 24-h period. It is shown that 31% of all tropical cyclones, 60% of all hurricanes, 83% of all major hurricanes, and all category 4 and 5 hurricanes underwent RI at least once during their lifetimes. The mean initial (t 5 0 h) conditions of cases that undergo RI are compared to those of the non-RI cases. These comparisons show that the RI cases form farther south and west and have a more westward component of motion than the non-RI cases. In addition, the RI cases are typically intensifying at a faster rate during the previous 12 h than the non-RI cases. The statistical analysis also shows that the RI cases are further from their maximum potential intensity and form in regions with warmer SSTs and higher lower-tropospheric relative humidity than the non-RI cases. The RI cases are also embedded in regions where the upper-level flow is more easterly and the vertical shear and upper-level forcing from troughs or cold lows is weaker than is observed for the non-RI cases. Finally, the RI cases tend to move with the flow within a higher layer of the atmosphere than the non-RI cases. A simple technique for estimating the probability of RI is described. Estimates of the probability of RI are determined using the predictors for which statistically significant differences are found between the RI and nonRI cases. Estimates of the probability of RI are also determined by combining the five predictors that had the highest individual probabilities of RI. The probability of RI increases from 1% to 41% when the total number of thresholds satisfied increases from zero to five. This simple technique was used in real time for the first time during the 2001 Atlantic hurricane season as part of the Joint Hurricane Testbed (JHT).


Weather and Forecasting | 1994

A Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic Basin

Mark DeMaria; John Kaplan

Abstract A statistical model for predicting intensity changes of Atlantic tropical cyclones at 12, 24, 36, 48, and 72 h is described. The model was developed using a standard multiple regression technique with climatological, persistence, and synoptic predictors. The model developmental sample includes all of the named Atlantic tropical cyclones from 1989 to 1992, with a few additional cases from 1982 to 1988. The sample includes only the times when the storms were over the ocean. The four primary predictors are 1) the difference between the current storm intensity and an estimate of the maximum possible intensity determined from the sea surface temperature, 2) the vertical shear of the horizontal wind, 3) persistence, and 4) the flux convergence of eddy angular momentum evaluated at 200 mb. The sea surface temperature and vertical shear variables are averaged along the track of the storm during the forecast period. The sea surface temperatures along the storm track are determined from monthly climatologi...


Journal of Climate | 1994

Sea Surface Temperature and the Maximum Intensity of Atlantic Tropical Cyclones

Mark DeMaria; John Kaplan

Abstract An empirical relationship between climatological sea surface temperature (SST) and the maximum intensity of tropical cyclones in the North Atlantic basin is developed from a 31-year sample (1962–1992). This relationship is compared with the theoretical results described by Emanuel. The theoretical results are in agreement with the observations over a wide range of SST, provided that the tropopause temperature is assumed to be a function of SST. Each storm is examined to determine how close the observed intensity comes to the maximum possible intensity (MPI). Results show that only about 20% of Atlantic tropical cyclones reach 80% or more of their MPI at the time when they are the most intense. On average, storms reach about 55% of their MPI. Storms that are farther west and farther north tend to reach a larger fraction of their MPI. Storms are also more likely to reach a larger fraction of their MPI in August–November than in June–July. There is considerable interannual variability in the yearly ...


Weather and Forecasting | 1999

An Updated Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic and Eastern North Pacific Basins

Mark Demaria; John Kaplan

Abstract Updates to the Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic basin are described. SHIPS combines climatological, persistence, and synoptic predictors to forecast intensity changes using a multiple regression technique. The original version of the model was developed for the Atlantic basin and was run in near–real time at the Hurricane Research Division beginning in 1993. In 1996, the model was incorporated into the National Hurricane Center operational forecast cycle, and a version was developed for the eastern North Pacific basin. Analysis of the forecast errors for the period 1993–96 shows that SHIPS had little skill relative to forecasts based upon climatology and persistence. However, SHIPS had significant skill in both the Atlantic and east Pacific basins during the 1997 hurricane season. The regression coefficients for SHIPS were rederived after each hurricane season since 1993 so that the previous season’s forecast cases were included in the sample. Modificatio...


Weather and Forecasting | 2010

A Revised Tropical Cyclone Rapid Intensification Index for the Atlantic and Eastern North Pacific Basins

John Kaplan; Mark DeMaria; John A. Knaff

Abstract A revised rapid intensity index (RII) is developed for the Atlantic and eastern North Pacific basins. The RII uses large-scale predictors from the Statistical Hurricane Intensity Prediction Scheme (SHIPS) to estimate the probability of rapid intensification (RI) over the succeeding 24 h utilizing linear discriminant analysis. Separate versions of the RII are developed for the 25-, 30-, and 35-kt RI thresholds, which represent the 90th (88th), 94th (92nd), and 97th (94th) percentiles of 24-h overwater intensity changes of tropical and subtropical cyclones in the Atlantic (eastern North Pacific) basins from 1989 to 2006, respectively. The revised RII became operational at the NHC prior to the 2008 hurricane season. The relative importance of the individual RI predictors is shown to differ between the two basins. Specifically, the previous 12-h intensity change, upper-level divergence, and vertical shear have the highest weights for the Atlantic basin, while the previous 12-h intensity change, symme...


Bulletin of the American Meteorological Society | 2006

The Intensity Forecasting Experiment: A NOAA Multiyear Field Program for Improving Tropical Cyclone Intensity Forecasts

Robert F. Rogers; Sim D. Aberson; Michael L. Black; Peter G. Black; Joe Cione; Peter P. Dodge; Jason Dunion; John F. Gamache; John Kaplan; Mark D. Powell; Nick Shay; Naomi Surgi; Eric W. Uhlhorn

Abstract In 2005, NOAAs Hurricane Research Division (HRD), part of the Atlantic Oceanographic and Meteorological Laboratory, began a multiyear experiment called the Intensity Forecasting Experiment (IFEX). By emphasizing a partnership among NOAAs HRD, Environmental Modeling Center (EMC), National Hurricane Center (NHC), Aircraft Operations Center (AOC), and National Environmental Satellite Data Information Service (NESDIS), IFEX represents a new approach for conducting hurricane field program operations. IFEX is intended to improve the prediction of tropical cyclone (TC) intensity change by 1) collecting observations that span the TC life cycle in a variety of environments; 2) developing and refining measurement technologies that provide improved real-time monitoring of TC intensity, structure, and environment; and 3) improving the understanding of the physical processes important in intensity change for a TC at all stages of its life cycle. This paper presents a summary of the accomplishments of IFEX d...


Journal of the Atmospheric Sciences | 1993

Upper-Level Eddy Angular Momentum Fluxes and Tropical Cyclone Intensity Change

Mark DeMaria; Jong-Jin Baik; John Kaplan

Abstract The eddy flux convergence of relative angular momentum (EFC) at 200 mb was calculated for the named tropical cyclones during the 1989–1991 Atlantic hurricane seasons (371 synoptic times). A period of enhanced EFC within 1500 km of the storm center occurred about every 5 days due to the interaction with upper-level troughs in the midlatitude westerlies or upper-level, cold lows in low latitudes. Twenty-six of the 32 storms had at least one period of enhanced EFC. In about one-third of the cases, the storm intensified just after the period of enhanced EFC. In most of the cases in which the storm did not intensify the vertical shear increased, the storm moved over cold water, or the storm became extratropical just after the period of enhanced EFC. A statistically significant relationship (at the 95% level) was found between the EFC within 600 km of the storm center and the intensity change during the next 48 h. However, this relationship could only be determined using a multiple regression technique...


Bulletin of the American Meteorological Society | 2012

NOAA'S Hurricane Intensity Forecasting Experiment: A Progress Report

Robert F. Rogers; Sim D. Aberson; Altug Aksoy; Bachir Annane; Michael L. Black; Joseph J. Cione; Neal Dorst; Jason Dunion; John Gamache; Stan Goldenberg; Sundararaman G. Gopalakrishnan; John Kaplan; Bradley W. Klotz; Sylvie Lorsolo; Frank D. Marks; Shirley T. Murillo; Mark D. Powell; Paul D. Reasor; Kathryn J. Sellwood; Eric W. Uhlhorn; Tomislava Vukicevic; Jun Zhang; Xuejin Zhang

An update of the progress achieved as part of the NOAA Intensity Forecasting Experiment (IFEX) is provided. Included is a brief summary of the noteworthy aircraft missions flown in the years since 2005, the first year IFEX flights occurred, as well as a description of the research and development activities that directly address the three primary IFEX goals: 1) collect observations that span the tropical cyclone (TC) life cycle in a variety of environments for model initialization and evaluation; 2) develop and refine measurement strategies and technologies that provide improved real-time monitoring of TC intensity, structure, and environment; and 3) improve the understanding of physical processes important in intensity change for a TC at all stages of its life cycle. Such activities include the real-time analysis and transmission of Doppler radar measurements; numerical model and data assimilation advancements; characterization of tropical cyclone composite structure across multiple scales, from vortex s...


Journal of Applied Meteorology and Climatology | 2006

On the Decay of Tropical Cyclone Winds Crossing Narrow Landmasses

Mark DeMaria; John A. Knaff; John Kaplan

A method is developed to adjust the Kaplan and DeMaria tropical cyclone inland wind decay model for storms that move over narrow landmasses. The basic assumption that the wind speed decay rate after landfall is proportional to the wind speed is modified to include a factor equal to the fraction of the storm circulation that is over land. The storm circulation is defined as a circular area with a fixed radius. Application of the modified model to Atlantic Ocean cases from 1967 to 2003 showed that a circulation radius of 110 km minimizes the bias in the total sample of landfalling cases and reduces the mean absolute error of the predicted maximum winds by about 12%. This radius is about 2 times the radius of maximum wind of a typical Atlantic tropical cyclone. The modified decay model was applied to the Statistical Hurricane Intensity Prediction Scheme (SHIPS), which uses the Kaplan and DeMaria decay model to adjust the intensity for the portion of the predicted track that is over land. The modified decay model reduced the intensity forecast errors by up to 8% relative to the original decay model for cases from 2001 to 2004 in which the storm was within 500 km from land.

Collaboration


Dive into the John Kaplan's collaboration.

Top Co-Authors

Avatar

Mark DeMaria

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

John A. Knaff

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Sim D. Aberson

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert F. Rogers

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Christopher S. Velden

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

James L. Franklin

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Mark D. Powell

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Charles R. Sampson

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

Christopher M. Rozoff

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge