Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Levi P. Sowers is active.

Publication


Featured researches published by Levi P. Sowers.


American Journal of Human Genetics | 2011

Mutations in Prickle Orthologs Cause Seizures in Flies, Mice, and Humans

Hirotaka Tao; J. Robert Manak; Levi P. Sowers; Xue Mei; Hiroshi Kiyonari; Takaya Abe; Nader S. Dahdaleh; Tian Yang; Shu Wu; Shan Chen; Mark H Fox; Christina A. Gurnett; Thomas J. Montine; Bird Td; Lisa G. Shaffer; Jill A. Rosenfeld; Juliann S. McConnell; Suneeta Madan-Khetarpal; Elizabeth Berry-Kravis; Hilary Griesbach; Russell P. Saneto; Matthew P. Scott; Dragana Antic; Jordan Reed; Riley Boland; Salleh N. Ehaideb; Hatem El-Shanti; Vinit B. Mahajan; Polly J. Ferguson; Jeffrey D. Axelrod

Epilepsy is heritable, yet few causative gene mutations have been identified, and thus far no human epilepsy gene mutations have been found to produce seizures in invertebrates. Here we show that mutations in prickle genes are associated with seizures in humans, mice, and flies. We identified human epilepsy patients with heterozygous mutations in either PRICKLE1 or PRICKLE2. In overexpression assays in zebrafish, prickle mutations resulted in aberrant prickle function. A seizure phenotype was present in the Prickle1-null mutant mouse, two Prickle1 point mutant (missense and nonsense) mice, and a Prickle2-null mutant mouse. Drosophila with prickle mutations displayed seizures that were responsive to anti-epileptic medication, and homozygous mutant embryos showed neuronal defects. These results suggest that prickle mutations have caused seizures throughout evolution.


Nature Neuroscience | 2014

Acid-sensing ion channels contribute to synaptic transmission and inhibit cocaine-evoked plasticity

Collin J. Kreple; Yuan Lu; Rebecca J. Taugher; Andrea L Schwager-Gutman; Madeliene Stump; Yimo Wang; Ali Ghobbeh; Rong Fan; Caitlin V. Cosme; Levi P. Sowers; Michael J. Welsh; Jason J. Radley; Ryan T. LaLumiere; John A. Wemmie

Acid-sensing ion channel 1A (ASIC1A) is abundant in the nucleus accumbens (NAc), a region known for its role in addiction. Because ASIC1A has been suggested to promote associative learning, we hypothesized that disrupting ASIC1A in the NAc would reduce drug-associated learning and memory. However, contrary to this hypothesis, we found that disrupting ASIC1A in the mouse NAc increased cocaine-conditioned place preference, suggesting an unexpected role for ASIC1A in addiction-related behavior. Moreover, overexpressing ASIC1A in rat NAc reduced cocaine self-administration. Investigating the underlying mechanisms, we identified a previously unknown postsynaptic current during neurotransmission that was mediated by ASIC1A and ASIC2 and thus well positioned to regulate synapse structure and function. Consistent with this possibility, disrupting ASIC1A altered dendritic spine density and glutamate receptor function, and increased cocaine-evoked plasticity, which resemble changes previously associated with cocaine-induced behavior. Together, these data suggest that ASIC1A inhibits the plasticity underlying addiction-related behavior and raise the possibility of developing therapies for drug addiction by targeting ASIC-dependent neurotransmission.


Molecular Psychiatry | 2013

Disruption of the non-canonical Wnt gene PRICKLE2 leads to autism-like behaviors with evidence for hippocampal synaptic dysfunction

Levi P. Sowers; L. Loo; Yuanming Wu; E. Campbell; J. D. Ulrich; Shu Wu; Lily Paemka; Thomas H. Wassink; K. Meyer; X. Bing; Hatem El-Shanti; Yuriy M. Usachev; Naoto Ueno; R. J. Manak; Andrew J. Shepherd; Polly J. Ferguson; Benjamin W. Darbro; George B. Richerson; Durga P. Mohapatra; John A. Wemmie; Alexander G. Bassuk

Autism spectrum disorders (ASDs) have been suggested to arise from abnormalities in the canonical and non-canonical Wnt signaling pathways. However, a direct connection between a human variant in a Wnt pathway gene and ASD-relevant brain pathology has not been established. Prickle2 (Pk2) is a post-synaptic non-canonical Wnt signaling protein shown to interact with post-synaptic density 95 (PSD-95). Here, we show that mice with disruption in Prickle2 display behavioral abnormalities including altered social interaction, learning abnormalities and behavioral inflexibility. Prickle2 disruption in mouse hippocampal neurons led to reductions in dendrite branching, synapse number and PSD size. Consistent with these findings, Prickle2 null neurons show decreased frequency and size of spontaneous miniature synaptic currents. These behavioral and physiological abnormalities in Prickle2 disrupted mice are consistent with ASD-like phenotypes present in other mouse models of ASDs. In 384 individuals with autism, we identified two with distinct, heterozygous, rare, non-synonymous PRICKLE2 variants (p.E8Q and p.V153I) that were shared by their affected siblings and inherited paternally. Unlike wild-type PRICKLE2, the PRICKLE2 variants found in ASD patients exhibit deficits in morphological and electrophysiological assays. These data suggest that these PRICKLE2 variants cause a critical loss of PRICKLE2 function. The data presented here provide new insight into the biological roles of Prickle2, its behavioral importance, and suggest disruptions in non-canonical Wnt genes such as PRICKLE2 may contribute to synaptic abnormalities underlying ASDs.


PLOS Genetics | 2015

Seizures Are Regulated by Ubiquitin-specific Peptidase 9 X-linked (USP9X), a De-Ubiquitinase

Lily Paemka; Vinit B. Mahajan; Salleh N. Ehaideb; Jessica M. Skeie; Men Chee Tan; Shu Wu; Allison J. Cox; Levi P. Sowers; Jozef Gecz; Lachlan A. Jolly; Polly J. Ferguson; Benjamin W. Darbro; Amy Schneider; Ingrid E. Scheffer; Gemma L. Carvill; Mefford Hc; Hatem El-Shanti; Stephen A. Wood; J. Robert Manak; Alexander G. Bassuk

Epilepsy is a common disabling disease with complex, multifactorial genetic and environmental etiology. The small fraction of epilepsies subject to Mendelian inheritance offers key insight into epilepsy disease mechanisms; and pathologies brought on by mutations in a single gene can point the way to generalizable therapeutic strategies. Mutations in the PRICKLE genes can cause seizures in humans, zebrafish, mice, and flies, suggesting the seizure-suppression pathway is evolutionarily conserved. This pathway has never been targeted for novel anti-seizure treatments. Here, the mammalian PRICKLE-interactome was defined, identifying prickle-interacting proteins that localize to synapses and a novel interacting partner, USP9X, a substrate-specific de-ubiquitinase. PRICKLE and USP9X interact through their carboxy-termini; and USP9X de-ubiquitinates PRICKLE, protecting it from proteasomal degradation. In forebrain neurons of mice, USP9X deficiency reduced levels of Prickle2 protein. Genetic analysis suggests the same pathway regulates Prickle-mediated seizures. The seizure phenotype was suppressed in prickle mutant flies by the small-molecule USP9X inhibitor, Degrasyn/WP1130, or by reducing the dose of fat facets a USP9X orthologue. USP9X mutations were identified by resequencing a cohort of patients with epileptic encephalopathy, one patient harbored a de novo missense mutation and another a novel coding mutation. Both USP9X variants were outside the PRICKLE-interacting domain. These findings demonstrate that USP9X inhibition can suppress prickle-mediated seizure activity, and that USP9X variants may predispose to seizures. These studies point to a new target for anti-seizure therapy and illustrate the translational power of studying diseases in species across the evolutionary spectrum.


PLOS ONE | 2013

PRICKLE1 Interaction with SYNAPSIN I Reveals a Role in Autism Spectrum Disorders

Lily Paemka; Vinit B. Mahajan; Jessica M. Skeie; Levi P. Sowers; Salleh N. Ehaideb; Pedro Gonzalez-Alegre; Toshikuni Sasaoka; Hirotaka Tao; Asuka Miyagi; Naoto Ueno; Keizo Takao; Tsuyoshi Miyakawa; Shu Wu; Benjamin W. Darbro; Polly J. Ferguson; Andrew A. Pieper; Jeremiah K. Britt; John A. Wemmie; Danielle S. Rudd; Thomas H. Wassink; Hatem El-Shanti; Mefford Hc; Gemma L. Carvill; J. Robert Manak; Alexander G. Bassuk

The frequent comorbidity of Autism Spectrum Disorders (ASDs) with epilepsy suggests a shared underlying genetic susceptibility; several genes, when mutated, can contribute to both disorders. Recently, PRICKLE1 missense mutations were found to segregate with ASD. However, the mechanism by which mutations in this gene might contribute to ASD is unknown. To elucidate the role of PRICKLE1 in ASDs, we carried out studies in Prickle1+/− mice and Drosophila, yeast, and neuronal cell lines. We show that mice with Prickle1 mutations exhibit ASD-like behaviors. To find proteins that interact with PRICKLE1 in the central nervous system, we performed a yeast two-hybrid screen with a human brain cDNA library and isolated a peptide with homology to SYNAPSIN I (SYN1), a protein involved in synaptogenesis, synaptic vesicle formation, and regulation of neurotransmitter release. Endogenous Prickle1 and Syn1 co-localize in neurons and physically interact via the SYN1 region mutated in ASD and epilepsy. Finally, a mutation in PRICKLE1 disrupts its ability to increase the size of dense-core vesicles in PC12 cells. Taken together, these findings suggest PRICKLE1 mutations contribute to ASD by disrupting the interaction with SYN1 and regulation of synaptic vesicles.


The Journal of Neuroscience | 2014

The Bed Nucleus of the Stria Terminalis Is Critical for Anxiety-Related Behavior Evoked by CO2 and Acidosis

Rebecca J. Taugher; Yuan Lu; Yimo Wang; Collin J. Kreple; Ali Ghobbeh; Rong Fan; Levi P. Sowers; John A. Wemmie

Carbon dioxide (CO2) inhalation lowers brain pH and induces anxiety, fear, and panic responses in humans. In mice, CO2 produces freezing and avoidance behavior that has been suggested to depend on the amygdala. However, a recent study in humans with bilateral amygdala lesions revealed that CO2 can trigger fear and panic even in the absence of amygdalae, suggesting the importance of extra-amygdalar brain structures. Because the bed nucleus of the stria terminalis (BNST) contributes to fear- and anxiety-related behaviors and expresses acid-sensing ion channel-1A (ASIC1A), we hypothesized that the BNST plays an important role in CO2-evoked fear-related behaviors in mice. We found that BNST lesions decreased both CO2-evoked freezing and CO2-conditioned place avoidance. In addition, we found that CO2 inhalation caused BNST acidosis and that acidosis was sufficient to depolarize BNST neurons and induce freezing behavior; both responses depended on ASIC1A. Finally, disrupting Asic1a specifically in the BNST reduced CO2-evoked freezing, whereas virus-vector-mediated expression of ASIC1A in the BNST of Asic1a−/− and Asic1a+/+ mice increased CO2-evoked freezing. Together, these findings identify the BNST as an extra-amygdalar fear circuit structure important in CO2-evoked fear-related behavior.


Journal of Neurogenetics | 2014

Defective Motile Cilia in Prickle2-Deficient Mice

Levi P. Sowers; Terry Yin; Vinit B. Mahajan; Alexander G. Bassuk

Abstract Motile cilia play diverse roles across phyla and cell types, and abnormalities in motile cilia lead to numerous disease states, including hydrocephalus. Although motile ciliary abnormalities in Prickle2 mutants have not yet been described, the planar cell polarity genes, including Prickle2, are implicated in the development and function of motile cilia. This report evaluates Prickle2-deficient mice for dysfunction in processes known to depend on functioning motile cilia. Prickle2-deficient mice do not develop hydrocephalus, but do display abnormal morphology and motility in the motile cilia of the ependyma. The morphology of tracheal motile cilia is also abnormal. Taken together, these results demonstrate that Prickle2 is required for normal ependymal motile cilia development and function.


Molecular Psychiatry | 2013

The non-canonical Wnt ligand Wnt5a rescues morphological deficits in Prickle2-deficient hippocampal neurons.

Levi P. Sowers; T J Mouw; Polly J. Ferguson; John A. Wemmie; Durga P. Mohapatra; Alexander G. Bassuk

The non-canonical Wnt ligand Wnt5a rescues morphological deficits in Prickle2-deficient hippocampal neurons


Frontiers in Neuroscience | 2015

ASIC1A in the bed nucleus of the stria terminalis mediates TMT-evoked freezing.

Rebecca J. Taugher; Ali Ghobbeh; Levi P. Sowers; Rong Fan; John A. Wemmie

Mice display an unconditioned freezing response to TMT, a predator odor isolated from fox feces. Here we found that in addition to freezing, TMT caused mice to decrease breathing rate, perhaps because of the aversive smell. Consistent with this possibility, olfactory bulb lesions attenuated this effect of TMT, as well as freezing. Interestingly, butyric acid, another foul odor, also caused mice to reduce breathing rate. However, unlike TMT, butyric acid did not induce freezing. Thus, although these aversive odors may affect breathing, the unpleasant smell and suppression of breathing by themselves are insufficient to cause freezing. Because the acid-sensing ion channel-1A (ASIC1A) has been previously implicated in TMT-evoked freezing, we tested whether Asic1a disruption also altered breathing. We found that TMT reduced breathing rate in both Asic1a+/+ and Asic1a−/− mice, suggesting that ASIC1A is not required for TMT to inhibit breathing and that the absence of TMT-evoked freezing in the Asic1a−/− mice is not due to an inability to detect TMT. These observations further indicate that ASIC1A must affect TMT freezing in another way. Because the bed nucleus of the stria terminalis (BNST) has been critically implicated in TMT-evoked freezing and robustly expresses ASIC1A, we tested whether ASIC1A in the BNST plays a role in TMT-evoked freezing. We disrupted ASIC1A in the BNST of Asic1aloxP/loxP mice by delivering Cre recombinase to the BNST with an adeno-associated virus (AAV) vector. We found that disrupting ASIC1A in the BNST reduced TMT-evoked freezing relative to control mice in which a virus expressing eGFP was injected. To test whether ASIC1A in the BNST was sufficient to increase TMT-evoked freezing, we used another AAV vector to express ASIC1A in the BNST of Asic1a−/− mice. We found region-restricted expression of ASIC1A in the BNST increased TMT-elicited freezing. Together, these data suggest that the BNST is a key site of ASIC1A action in TMT-evoked freezing.


Pain | 2018

Peripherally administered calcitonin gene–related peptide induces spontaneous pain in mice: implications for migraine

Brandon J. Rea; Anne-Sophie Wattiez; Jayme S. Waite; William C. Castonguay; Chantel M. Schmidt; Aaron M. Fairbanks; Bennett R. Robertson; Cameron J. Brown; Bianca N. Mason; Maria-Cristina Moldovan-Loomis; Leon F. Garcia-Martinez; Pieter Poolman; Johannes Ledolter; Randy H. Kardon; Levi P. Sowers; Andrew F. Russo

Abstract Migraine is the third most common disease in the world (behind dental caries and tension-type headache) with an estimated global prevalence of 15%, yet its etiology remains poorly understood. Recent clinical trials have heralded the potential of therapeutic antibodies that block the actions of the neuropeptide calcitonin gene–related peptide (CGRP) or its receptor to prevent migraine. Calcitonin gene–related peptide is believed to contribute to trigeminal nerve hypersensitivity and photosensitivity in migraine, but a direct role in pain associated with migraine has not been established. In this study, we report that peripherally administered CGRP can act in a light-independent manner to produce spontaneous pain in mice that is manifested as a facial grimace. As an objective validation of the orbital tightening action unit of the grimace response, we developed a squint assay using a video-based measurement of the eyelid fissure, which confirmed a significant squint response after CGRP injection, both in complete darkness and very bright light. These indicators of discomfort were completely blocked by preadministration of a monoclonal anti-CGRP–blocking antibody. However, the nonsteroidal anti-inflammatory drug meloxicam failed to block the effect of CGRP. Interestingly, an apparent sex-specific response to treatment was observed with the antimigraine drug sumatriptan partially blocking the CGRP response in male, but not female mice. These results demonstrate that CGRP can induce spontaneous pain, even in the absence of light, and that the squint response provides an objective biomarker for CGRP-induced pain that is translatable to humans.

Collaboration


Dive into the Levi P. Sowers's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Polly J. Ferguson

Roy J. and Lucille A. Carver College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge