Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John A. Zuris is active.

Publication


Featured researches published by John A. Zuris.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Facile transfer of [2Fe-2S] clusters from the diabetes drug target mitoNEET to an apo-acceptor protein

John A. Zuris; Yael Harir; Andrea R. Conlan; Maya Shvartsman; Dorit Michaeli; Sagi Tamir; Mark L. Paddock; José N. Onuchic; Ron Mittler; Zvi Ioav Cabantchik; Patricia A. Jennings; Rachel Nechushtai

MitoNEET (mNT) is an outer mitochondrial membrane target of the thiazolidinedione diabetes drugs with a unique fold and a labile [2Fe-2S] cluster. The rare 1-His and 3-Cys coordination of mNT’s [2Fe-2S] leads to cluster lability that is strongly dependent on the presence of the single histidine ligand (His87). These properties of mNT are similar to known [2Fe-2S] shuttle proteins. Here we investigated whether mNT is capable of cluster transfer to acceptor protein(s). Facile [2Fe-2S] cluster transfer is observed between oxidized mNT and apo-ferredoxin (a-Fd) using UV-VIS spectroscopy and native-PAGE, as well as with a mitochondrial iron detection assay in cells. The transfer is unidirectional, proceeds to completion, and occurs with a second-order-reaction rate that is comparable to known iron-sulfur transfer proteins. Mutagenesis of His87 with Cys (H87C) inhibits transfer of the [2Fe-2S] clusters to a-Fd. This inhibition is beyond that expected from increased cluster kinetic stability, as the equivalently stable Lys55 to Glu (K55E) mutation did not inhibit transfer. The H87C mutant also failed to transfer its iron to mitochondria in HEK293 cells. The diabetes drug pioglitazone inhibits iron transfer from WT mNT to mitochondria, indicating that pioglitazone affects a specific property, [2Fe-2S] cluster transfer, in the cellular environment. This finding is interesting in light of the role of iron overload in diabetes. Our findings suggest a likely role for mNT in [2Fe-2S] and/or iron transfer to acceptor proteins and support the idea that pioglitazone’s antidiabetic mode of action may, in part, be to inhibit transfer of mNT’s [2Fe-2S] cluster.


Journal of Molecular Biology | 2009

Crystal structure of Miner1: The redox-active 2Fe-2S protein causative in Wolfram Syndrome 2.

Andrea R. Conlan; Herbert L. Axelrod; Aina E. Cohen; Edward C. Abresch; John A. Zuris; David Yee; Rachel Nechushtai; Patricia A. Jennings; Mark L. Paddock

The endoplasmic reticulum protein Miner1 is essential for health and longevity. Mis-splicing of CISD2, which codes for Miner1, is causative in Wolfram Syndrome 2 (WFS2) resulting in early onset optic atrophy, diabetes mellitus, deafness and decreased lifespan. In knock-out studies, disruption of CISD2 leads to accelerated aging, blindness and muscle atrophy. In this work, we characterized the soluble region of human Miner1 and solved its crystal structure to a resolution of 2.1 A (R-factor=17%). Although originally annotated as a zinc finger, we show that Miner1 is a homodimer harboring two redox-active 2Fe-2S clusters, indicating for the first time an association of a redox-active FeS protein with WFS2. Each 2Fe-2S cluster is bound by a rare Cys(3)-His motif within a 17 amino acid segment. Miner1 is the first functionally different protein that shares the NEET fold with its recently identified paralog mitoNEET, an outer mitochondrial membrane protein. We report the first measurement of the redox potentials (E(m)) of Miner1 and mitoNEET, showing that they are proton-coupled with E(m) approximately 0 mV at pH 7.5. Changes in the pH sensitivity of their cluster stabilities are attributed to significant differences in the electrostatic distribution and surfaces between the two proteins. The structural and biophysical results are discussed in relation to possible roles of Miner1 in cellular Fe-S management and redox reactions.


Biochemistry | 2009

Redox characterization of the FeS protein mitoNEET and impact of thiazolidinedione drug binding

Daniel W. Bak; John A. Zuris; Mark L. Paddock; Patricia A. Jennings; Sean J. Elliott

MitoNEET is a small mitochondrial protein that has been identified recently as a target for the thiazolidinedione (TZD) class of diabetes drugs. MitoNEET also binds a unique three-Cys- and one-His-ligated [corrected] [2Fe-2S] cluster. Here we use protein film voltammetry (PFV) as a means to probe the redox properties of mitoNEET and demonstrate the direct impact of TZD drug binding upon the redox chemistry of the FeS cluster. When TZDs bind, the midpoint potential at pH 7 is lowered by more than 100 mV, shifting from approximately 0 to -100 mV. In contrast, a His87Cys mutant negates the ability of TZDs to affect the midpoint potential, suggesting a model of drug binding in which His87 is critical to communication with the FeS center of mitoNEET.


Journal of the American Chemical Society | 2010

Engineering the Redox Potential over a Wide Range within a New Class of FeS Proteins

John A. Zuris; Danny A. Halim; Andrea R. Conlan; Edward C. Abresch; Rachel Nechushtai; Mark L. Paddock; Patricia A. Jennings

MitoNEET is a newly discovered mitochondrial protein and a target of the TZD class of antidiabetes drugs. MitoNEET is homodimeric with each protomer binding a [2Fe-2S] center through a rare 3-Cys and 1-His coordination geometry. Both the fold and the coordination of the [2Fe-2S] centers suggest that it could have novel properties compared to other known [2Fe-2S] proteins. We tested the robustness of mitoNEET to mutation and the range over which the redox potential (EM) could be tuned. We found that the protein could tolerate an array of mutations that modified the EM of the [2Fe-2S] center over a range of ∼700 mV, which is the largest EM range engineered in an FeS protein and, importantly, spans the cellular redox range (+200 to −300 mV). These properties make mitoNEET potentially useful for both physiological studies and industrial applications as a stable, water-soluble, redox agent.


The Plant Cell | 2012

Characterization of Arabidopsis NEET reveals an ancient role for NEET proteins in iron metabolism.

Rachel Nechushtai; Andrea R. Conlan; Yael Harir; Luhua Song; Ohad Yogev; Yael Eisenberg-Domovich; Oded Livnah; Dorit Michaeli; Rachel Rosen; Vincent Ma; Yuting Luo; John A. Zuris; Mark L. Paddock; Zvi Ioav Cabantchik; Patricia A. Jennings; Ron Mittler

This work describes biochemical, biophysical, structural, and genetic analyses of an Arabidopsis homolog of mammalian NEET proteins, which are involved in a wide range of cellular processes. It finds that At-NEET plays a key role in plant development, senescence, reactive oxygen species homeostasis, and iron metabolism. The NEET family is a newly discovered group of proteins involved in a diverse array of biological processes, including autophagy, apoptosis, aging, diabetes, and reactive oxygen homeostasis. They form a novel structure, the NEET fold, in which two protomers intertwine to form a two-domain motif, a cap, and a unique redox-active labile 2Fe-2S cluster binding domain. To accelerate the functional study of NEET proteins, as well as to examine whether they have an evolutionarily conserved role, we identified and characterized a plant NEET protein. Here, we show that the Arabidopsis thaliana At5g51720 protein (At-NEET) displays biochemical, structural, and biophysical characteristics of a NEET protein. Phenotypic characterization of At-NEET revealed a key role for this protein in plant development, senescence, reactive oxygen homeostasis, and Fe metabolism. A role in Fe metabolism was further supported by biochemical and cell biology studies of At-NEET in plant and mammalian cells, as well as mutational analysis of its cluster binding domain. Our findings support the hypothesis that NEET proteins have an ancient role in cells associated with Fe metabolism.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Integrated strategy reveals the protein interface between cancer targets Bcl-2 and NAF-1

Sagi Tamir; Shahar Rotem-Bamberger; Chen Katz; Faruck Morcos; Kendra L. Hailey; John A. Zuris; Charles Wang; Andrea R. Conlan; Colin H. Lipper; Mark L. Paddock; Ron Mittler; José N. Onuchic; Patricia A. Jennings; Assaf Friedler; Rachel Nechushtai

Significance Misregulation of cell growth and proliferation leads to the onset of various diseases, including cancer. Two proteins crucial for proper cellular control that were recently shown to affect cellular proliferation are Bcl-2, well-known for its role in programmed cell death, and the newly identified iron-sulfur protein NAF-1, localized near the mitochondrial outer membrane. In this report, we use a strategy utilizing a combination of experimental and computational techniques that provides valuable information to enable us to determine a molecular picture of the NAF-1–Bcl-2 interaction interface that is more complete than that obtained from any one technique alone. This interaction interface provides the basis from which novel drugs can be developed for the treatment of diseases such as cancer. Life requires orchestrated control of cell proliferation, cell maintenance, and cell death. Involved in these decisions are protein complexes that assimilate a variety of inputs that report on the status of the cell and lead to an output response. Among the proteins involved in this response are nutrient-deprivation autophagy factor-1 (NAF-1)- and Bcl-2. NAF-1 is a homodimeric member of the novel Fe-S protein NEET family, which binds two 2Fe-2S clusters. NAF-1 is an important partner for Bcl-2 at the endoplasmic reticulum to functionally antagonize Beclin 1-dependent autophagy [Chang NC, Nguyen M, Germain M, Shore GC (2010) EMBO J 29(3):606–618]. We used an integrated approach involving peptide array, deuterium exchange mass spectrometry (DXMS), and functional studies aided by the power of sufficient constraints from direct coupling analysis (DCA) to determine the dominant docked conformation of the NAF-1–Bcl-2 complex. NAF-1 binds to both the pro- and antiapoptotic regions (BH3 and BH4) of Bcl-2, as demonstrated by a nested protein fragment analysis in a peptide array and DXMS analysis. A combination of the solution studies together with a new application of DCA to the eukaryotic proteins NAF-1 and Bcl-2 provided sufficient constraints at amino acid resolution to predict the interaction surfaces and orientation of the protein–protein interactions involved in the docked structure. The specific integrated approach described in this paper provides the first structural information, to our knowledge, for future targeting of the NAF-1–Bcl-2 complex in the regulation of apoptosis/autophagy in cancer biology.


PLOS ONE | 2013

Nutrient-Deprivation Autophagy Factor-1 (NAF-1): Biochemical Properties of a Novel Cellular Target for Anti-Diabetic Drugs

Sagi Tamir; John A. Zuris; Lily Agranat; Colin H. Lipper; Andrea R. Conlan; Dorit Michaeli; Yael Harir; Mark L. Paddock; Ron Mittler; Zvi Ioav Cabantchik; Patricia A. Jennings; Rachel Nechushtai

Nutrient-deprivation autophagy factor-1 (NAF-1) (synonyms: Cisd2, Eris, Miner1, and Noxp70) is a [2Fe-2S] cluster protein immune-detected both in endoplasmic reticulum (ER) and mitochondrial outer membrane. It was implicated in human pathology (Wolfram Syndrome 2) and in BCL-2 mediated antagonization of Beclin 1-dependent autophagy and depression of ER calcium stores. To gain insights about NAF-1 functions, we investigated the biochemical properties of its 2Fe-2S cluster and sensitivity of those properties to small molecules. The structure of the soluble domain of NAF-1 shows that it forms a homodimer with each protomer containing a [2Fe-2S] cluster bound by 3 Cys and one His. NAF-1 has shown the unusual abilities to transfer its 2Fe-2S cluster to an apo-acceptor protein (followed in vitro by spectrophotometry and by native PAGE electrophoresis) and to transfer iron to intact mitochondria in cell models (monitored by fluorescence imaging with iron fluorescent sensors targeted to mitochondria). Importantly, the drug pioglitazone abrogates NAF-1s ability to transfer the cluster to acceptor proteins and iron to mitochondria. Similar effects were found for the anti-diabetes and longevity-promoting antioxidant resveratrol. These results reveal NAF-1 as a previously unidentified cell target of anti-diabetes thiazolidinedione drugs like pioglitazone and of the natural product resveratrol, both of which interact with the protein and stabilize its labile [2Fe-2S] cluster.


Journal of Biological Chemistry | 2012

NADPH Inhibits [2Fe-2S] Cluster Protein Transfer from Diabetes Drug Target MitoNEET to an Apo-acceptor Protein

John A. Zuris; Syed S. Ali; Howard Yeh; Tung A. Nguyen; Rachel Nechushtai; Mark L. Paddock; Patricia A. Jennings

Background: MitoNEET functions as a [2Fe-2S] cluster transfer protein, and the anti-type II diabetes drug pioglitazone can inhibit cluster transfer. Results: Binding of NADPH inhibits transfer of the [2Fe-2S] cluster to apo-acceptor proteins. Conclusion: NADPH, through interactions with Asp-84, inhibits the cluster transfer ability of mitoNEET. Significance: In the cellular environment, NADPH may act as a key regulator of mitoNEET [2Fe-2S] cluster transfer. MitoNEET (mNT) is the founding member of the recently discovered CDGSH family of [2Fe-2S] proteins capable of [2Fe-2S] cluster transfer to apo-acceptor proteins. It is a target of the thiazolidinedione (TZD) class of anti-diabetes drugs whose binding modulate both electron transfer and cluster transfer properties. The [2Fe-2S] cluster in mNT is destabilized upon binding of NADPH, which leads to loss of the [2Fe-2S] cluster to the solution environment. Because mNT is capable of transferring [2Fe-2S] clusters to apo-acceptor proteins, we sought to determine whether NADPH binding also affects cluster transfer. We show that NADPH inhibits transfer of the [2Fe-2S] cluster to an apo-acceptor protein with an inhibition constant (Ki) of 200 μm, which reflects that of NADPH concentrations expected under physiological conditions. In addition, we determined that the strictly conserved cluster interacting residue Asp-84 in the CDGSH domain is necessary for the NADPH-dependent inhibition of [2Fe-2S] cluster transfer. The most critical cellular function of NADPH is in the maintenance of a pool of reducing equivalents, which is essential to counteract oxidative damage. Taken together, our findings suggest that NADPH can regulate both mNT [2Fe-2S] cluster levels in the cell as well as the ability of the protein to transfer [2Fe-2S] clusters to cytosolic or mitochondrial acceptors.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Allostery in the ferredoxin protein motif does not involve a conformational switch

Rachel Nechushtai; Heiko Lammert; Dorit Michaeli; Yael Eisenberg-Domovich; John A. Zuris; Maria A. Luca; Dominique T. Capraro; Alexander Fish; Odelia Shimshon; Melinda Roy; Alexander Schug; Paul C. Whitford; Oded Livnah; José N. Onuchic; Patricia A. Jennings

Regulation of protein function via cracking, or local unfolding and refolding of substructures, is becoming a widely recognized mechanism of functional control. Oftentimes, cracking events are localized to secondary and tertiary structure interactions between domains that control the optimal position for catalysis and/or the formation of protein complexes. Small changes in free energy associated with ligand binding, phosphorylation, etc., can tip the balance and provide a regulatory functional switch. However, understanding the factors controlling function in single-domain proteins is still a significant challenge to structural biologists. We investigated the functional landscape of a single-domain plant-type ferredoxin protein and the effect of a distal loop on the electron-transfer center. We find the global stability and structure are minimally perturbed with mutation, whereas the functional properties are altered. Specifically, truncating the L1,2 loop does not lead to large-scale changes in the structure, determined via X-ray crystallography. Further, the overall thermal stability of the protein is only marginally perturbed by the mutation. However, even though the mutation is distal to the iron–sulfur cluster (∼20 Å), it leads to a significant change in the redox potential of the iron–sulfur cluster (57 mV). Structure-based all-atom simulations indicate correlated dynamical changes between the surface-exposed loop and the iron–sulfur cluster-binding region. Our results suggest intrinsic communication channels within the ferredoxin fold, composed of many short-range interactions, lead to the propagation of long-range signals. Accordingly, protein interface interactions that involve L1,2 could potentially signal functional changes in distal regions, similar to what is observed in other allosteric systems.


Acta Crystallographica Section D-biological Crystallography | 2011

Mutation of the His ligand in mitoNEET stabilizes the 2Fe–2S cluster despite conformational heterogeneity in the ligand environment

Andrea R. Conlan; Mark L. Paddock; Christina Homer; Herbert L. Axelrod; Aina E. Cohen; Edward C. Abresch; John A. Zuris; Rachel Nechushtai; Patricia A. Jennings

MitoNEET is the only identified Fe-S protein localized to the outer mitochondrial membrane and a 1.5 Å resolution X-ray analysis has revealed a unique structure [Paddock et al. (2007), Proc. Natl Acad. Sci. USA, 104, 14342-14347]. The 2Fe-2S cluster is bound with a 3Cys-1His coordination which defines a new class of 2Fe-2S proteins. The hallmark feature of this class is the single noncysteine ligand His87, which when replaced by Cys decreases the redox potential (E(m)) by ∼300 mV and increases the stability of the cluster by around sixfold. Unexpectedly, the pH dependence of the lifetime of the 2Fe-2S cluster remains the same as in the wild-type protein. Here, the crystal structure of H87C mitoNEET was determined to 1.7 Å resolution (R factor = 18%) to investigate the structural basis of the changes in the properties of the 2Fe-2S cluster. In comparison to the wild type, structural changes are localized to the immediate vicinity of the cluster-binding region. Despite the increased stability, Cys87 displays two distinct conformations, with distances of 2.3 and 3.2 Å between the S(γ) and the outer Fe of the 2Fe-2S cluster. In addition, Lys55 exhibits multiple conformations in the H87C mutant protein. The structure and distinct characteristics of the H87C mutant provide a framework for further studies investigating the effects of mutation on the properties of the 2Fe-2S cluster in this new class of proteins.

Collaboration


Dive into the John A. Zuris's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rachel Nechushtai

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ron Mittler

University of North Texas

View shared research outputs
Top Co-Authors

Avatar

Dorit Michaeli

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Sagi Tamir

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge