Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark L. Paddock is active.

Publication


Featured researches published by Mark L. Paddock.


Biochimica et Biophysica Acta | 2000

Proton and electron transfer in bacterial reaction centers

Melvin Y. Okamura; Mark L. Paddock; M.S. Graige; G. Feher

The bacterial reaction center couples light-induced electron transfer to proton pumping across the membrane by reactions of a quinone molecule Q(B) that binds two electrons and two protons at the active site. This article reviews recent experimental work on the mechanism of the proton-coupled electron transfer and the pathways for proton transfer to the Q(B) site. The mechanism of the first electron transfer, k((1))(AB), Q(-)(A)Q(B)-->Q(A)Q(-)(B), was shown to be rate limited by conformational gating. The mechanism of the second electron transfer, k((2))(AB), was shown to involve rapid reversible proton transfer to the semiquinone followed by rate-limiting electron transfer, H(+)+Q(-)(A)Q(-)(B) ifQ(-)(A)Q(B)H-->Q(A)(Q(B)H)(-). The pathways for transfer of the first and second protons were elucidated by high-resolution X-ray crystallography as well as kinetic studies showing changes in the rate of proton transfer due to site directed mutations and metal ion binding.


Proceedings of the National Academy of Sciences of the United States of America | 2007

MitoNEET is a uniquely folded 2Fe 2S outer mitochondrial membrane protein stabilized by pioglitazone.

Mark L. Paddock; Sandra E. Wiley; Herbert L. Axelrod; Aina E. Cohen; Melinda Roy; Edward C. Abresch; Dominique T. Capraro; Anne N. Murphy; Rachel Nechushtai; Jack E. Dixon; Patricia A. Jennings

Iron–sulfur (Fe–S) proteins are key players in vital processes involving energy homeostasis and metabolism from the simplest to most complex organisms. We report a 1.5 Å x-ray crystal structure of the first identified outer mitochondrial membrane Fe–S protein, mitoNEET. Two protomers intertwine to form a unique dimeric structure that constitutes a new fold to not only the ≈650 reported Fe–S protein structures but also to all known proteins. We name this motif the NEET fold. The protomers form a two-domain structure: a β-cap domain and a cluster-binding domain that coordinates two acid-labile 2Fe–2S clusters. Binding of pioglitazone, an insulin-sensitizing thiazolidinedione used in the treatment of type 2 diabetes, stabilizes the protein against 2Fe–2S cluster release. The biophysical properties of mitoNEET suggest that it may participate in a redox-sensitive signaling and/or in Fe–S cluster transfer.


Journal of Biological Chemistry | 2007

The outer mitochondrial membrane protein mitoNEET contains a novel redox-active 2Fe-2S cluster

Sandra E. Wiley; Mark L. Paddock; Edward C. Abresch; Larry A. Gross; Peter van der Geer; Rachel Nechushtai; Anne N. Murphy; Patricia A. Jennings; Jack E. Dixon

The outer mitochondrial membrane protein mitoNEET was discovered as a binding target of pioglitazone, an insulin-sensitizing drug of the thiazolidinedione class used to treat type 2 diabetes (Colca, J. R., McDonald, W. G., Waldon, D. J., Leone, J. W., Lull, J. M., Bannow, C. A., Lund, E. T., and Mathews, W. R. (2004) Am. J. Physiol. 286, E252–E260). We have shown that mitoNEET is a member of a small family of proteins containing a 39-amino-acid CDGSH domain. Although the CDGSH domain is annotated as a zinc finger motif, mitoNEET was shown to contain iron (Wiley, S. E., Murphy, A. N., Ross, S. A., van der Geer, P., and Dixon, J. E. (2007) Proc. Natl. Acad. Sci. U. S. A. 104, 5318–5323). Optical and electron paramagnetic resonance spectroscopy showed that it contained a redox-active pH-labile Fe-S cluster. Mass spectrometry showed the loss of 2Fe and 2S upon cofactor extrusion. Spectroscopic studies of recombinant proteins showed that the 2Fe-2S cluster was coordinated by Cys-3 and His-1. The His ligand was shown to be involved in the observed pH lability of the cluster, indicating that loss of this ligand via protonation triggered release of the cluster. mitoNEET is the first identified 2Fe-2S-containing protein located in the outer mitochondrial membrane. Based on the biophysical data and domain fusion analysis, mitoNEET may function in Fe-S cluster shuttling and/or in redox reactions.


FEBS Letters | 2003

Proton transfer pathways and mechanism in bacterial reaction centers

Mark L. Paddock; G. Feher; Melvin Y. Okamura

The focus of this minireview is to discuss the state of knowledge of the pathways and rates of proton transfer in the bacterial reaction center (RC) from Rhodobacter sphaeroides. Protons involved in the light driven catalytic reduction of a quinone molecule QB to quinol QBH2 travel from the aqueous solution through well defined proton transfer pathways to the oxygen atoms of the quinone. Three main topics are discussed: (1) the pathways for proton transfer involving the residues: His‐H126, His‐H128, Asp‐L210, Asp‐M17, Asp‐L213, Ser‐L223 and Glu‐L212, which were determined by a variety of methods including the use of proton uptake inhibiting metal ions (e.g. Zn2+ and Cd2+); (2) the rate constants for proton transfer, obtained from a ‘chemical rescue’ study was determined to be 2×105 s−1 and 2×104 s−1 for the proton uptake to Glu‐L212 and QB − , respectively; (3) structural studies of altered proton transfer pathways in revertant RCs that lack the key amino acid Asp‐L213 show a series of structural changes that propagate toward L213 potentially allowing Glu‐H173 to participate in the proton transfer processes.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Facile transfer of [2Fe-2S] clusters from the diabetes drug target mitoNEET to an apo-acceptor protein

John A. Zuris; Yael Harir; Andrea R. Conlan; Maya Shvartsman; Dorit Michaeli; Sagi Tamir; Mark L. Paddock; José N. Onuchic; Ron Mittler; Zvi Ioav Cabantchik; Patricia A. Jennings; Rachel Nechushtai

MitoNEET (mNT) is an outer mitochondrial membrane target of the thiazolidinedione diabetes drugs with a unique fold and a labile [2Fe-2S] cluster. The rare 1-His and 3-Cys coordination of mNT’s [2Fe-2S] leads to cluster lability that is strongly dependent on the presence of the single histidine ligand (His87). These properties of mNT are similar to known [2Fe-2S] shuttle proteins. Here we investigated whether mNT is capable of cluster transfer to acceptor protein(s). Facile [2Fe-2S] cluster transfer is observed between oxidized mNT and apo-ferredoxin (a-Fd) using UV-VIS spectroscopy and native-PAGE, as well as with a mitochondrial iron detection assay in cells. The transfer is unidirectional, proceeds to completion, and occurs with a second-order-reaction rate that is comparable to known iron-sulfur transfer proteins. Mutagenesis of His87 with Cys (H87C) inhibits transfer of the [2Fe-2S] clusters to a-Fd. This inhibition is beyond that expected from increased cluster kinetic stability, as the equivalently stable Lys55 to Glu (K55E) mutation did not inhibit transfer. The H87C mutant also failed to transfer its iron to mitochondria in HEK293 cells. The diabetes drug pioglitazone inhibits iron transfer from WT mNT to mitochondria, indicating that pioglitazone affects a specific property, [2Fe-2S] cluster transfer, in the cellular environment. This finding is interesting in light of the role of iron overload in diabetes. Our findings suggest a likely role for mNT in [2Fe-2S] and/or iron transfer to acceptor proteins and support the idea that pioglitazone’s antidiabetic mode of action may, in part, be to inhibit transfer of mNT’s [2Fe-2S] cluster.


Journal of Molecular Biology | 2009

Crystal structure of Miner1: The redox-active 2Fe-2S protein causative in Wolfram Syndrome 2.

Andrea R. Conlan; Herbert L. Axelrod; Aina E. Cohen; Edward C. Abresch; John A. Zuris; David Yee; Rachel Nechushtai; Patricia A. Jennings; Mark L. Paddock

The endoplasmic reticulum protein Miner1 is essential for health and longevity. Mis-splicing of CISD2, which codes for Miner1, is causative in Wolfram Syndrome 2 (WFS2) resulting in early onset optic atrophy, diabetes mellitus, deafness and decreased lifespan. In knock-out studies, disruption of CISD2 leads to accelerated aging, blindness and muscle atrophy. In this work, we characterized the soluble region of human Miner1 and solved its crystal structure to a resolution of 2.1 A (R-factor=17%). Although originally annotated as a zinc finger, we show that Miner1 is a homodimer harboring two redox-active 2Fe-2S clusters, indicating for the first time an association of a redox-active FeS protein with WFS2. Each 2Fe-2S cluster is bound by a rare Cys(3)-His motif within a 17 amino acid segment. Miner1 is the first functionally different protein that shares the NEET fold with its recently identified paralog mitoNEET, an outer mitochondrial membrane protein. We report the first measurement of the redox potentials (E(m)) of Miner1 and mitoNEET, showing that they are proton-coupled with E(m) approximately 0 mV at pH 7.5. Changes in the pH sensitivity of their cluster stabilities are attributed to significant differences in the electrostatic distribution and surfaces between the two proteins. The structural and biophysical results are discussed in relation to possible roles of Miner1 in cellular Fe-S management and redox reactions.


Proceedings of the National Academy of Sciences of the United States of America | 2013

NAF-1 and mitoNEET are central to human breast cancer proliferation by maintaining mitochondrial homeostasis and promoting tumor growth

Yang-Sung Sohn; Sagi Tamir; Luhua Song; Dorit Michaeli; Imad Matouk; Andrea R. Conlan; Yael Harir; Sarah H. Holt; Vladimir Shulaev; Mark L. Paddock; Abraham Hochberg; Ioav Z. Cabanchick; José N. Onuchic; Patricia A. Jennings; Rachel Nechushtai; Ron Mittler

Mitochondria are emerging as important players in the transformation process of cells, maintaining the biosynthetic and energetic capacities of cancer cells and serving as one of the primary sites of apoptosis and autophagy regulation. Although several avenues of cancer therapy have focused on mitochondria, progress in developing mitochondria-targeting anticancer drugs nonetheless has been slow, owing to the limited number of known mitochondrial target proteins that link metabolism with autophagy or cell death. Recent studies have demonstrated that two members of the newly discovered family of NEET proteins, NAF-1 (CISD2) and mitoNEET (mNT; CISD1), could play such a role in cancer cells. NAF-1 was shown to be a key player in regulating autophagy, and mNT was proposed to mediate iron and reactive oxygen homeostasis in mitochondria. Here we show that the protein levels of NAF-1 and mNT are elevated in human epithelial breast cancer cells, and that suppressing the level of these proteins using shRNA results in significantly reduced cell proliferation and tumor growth, decreased mitochondrial performance, uncontrolled accumulation of iron and reactive oxygen in mitochondria, and activation of autophagy. Our findings highlight NEET proteins as promising mitochondrial targets for cancer therapy.


Photosynthesis Research | 1988

Reaction centers from three herbicide-resistant mutants of Rhodobacter sphaeroides 2.4.1: sequence analysis and preliminary characterization

Mark L. Paddock; Scott H. Rongey; Edward C. Abresch; G. Feher; Melvin Y. Okamura

Many herbicides that inhibit photosynthesis in plants also inhibit photosynthesis in bacteria. We have isolated three mutants of the photosynthetic bacterium Rhodobacter sphaeroides that were selected for increased resistance to the herbicide terbutryne. All three mutants also showed increased resistance to the known electron transfer inhibitor o-phenanthroline. The primary structures of the mutants were determined by recombinant DNA techniques. All mutations were located on the gene coding for the L-subunit resulting in these changes Ile229 → Met, Ser223 → Pro and Tyr222 → Gly. The mutations of Ser223 is analogous to the mutation of Ser264 in the D1 subunit of photosystem II in green plants, strengthening the functional analogy between D1 and the bacterial L-subunit. The changed amino acids of the mutant strains form part of the binding pocket for the secondary quinone, Qb. This is consistent with the idea that the herbicides are competitive inhibitors for the Qbbinding site. The reaction centers of the mutants were characterized with respect to electron transfer rates, inhibition constants of terbutryne and o-phenanthroline, and binding constants of the quinone UQ0 and the inhibitors. By correlating these results with the three-dimensional structure obtained from x-ray analysis by Allen et al. (1987a, 1987b), the likely positions of o-phenanthroline and terbutryne were deduced. These correspond to the positions deduced by Michel et al. (1986a) for Rhodopseudomonas viridis.


Photosynthesis Research | 1998

Identification of proton transfer pathways in the X-ray crystal structure of the bacterial reaction center from Rhodobacter sphaeroides

Edward C. Abresch; Mark L. Paddock; Michael H. B. Stowell; T.M. McPhillips; Herbert L. Axelrod; S.M. Soltis; Douglas C. Rees; Melvin Y. Okamura; G. Feher

Structural features that have important implications for the fundamental process of transmembrane proton transfer are examined in the recently published high resolution atomic structures of the reaction center (RC) from Rhodobacter sphaeroides in the dark adapted state (DQAQB) and the charged separated state (D+QAQB−); the latter is the active state for proton transfer to the semiquinone. The structures have been determined at 2.2 Å and 2.6 Å resolution, respectively, as reported by Stowell et al. (1997) [Science 276: 812–816]. Three possible proton transfer pathways (P1, P2, P3) consisting of water molecules and/or protonatable residues were identified which connect the QB binding region with the cytoplasmic exposed surface at Asp H224 & Asp M240 (P1), Tyr M3 (P2) and Asp M17 (P3). All three represent possible pathways for proton transfer into the RC. P1 contains an uninterrupted chain of water molecules. This path could, in addition, facilitate the exchange of quinone for quinol during the photocycle by allowing water to move into and out of the binding pocket. Located near these pathways is a cluster of electrostatically interacting acid residues (Asp-L213, Glu-H173, Asp-M17, Asp H124, Asp-L210 and Asp H170) each being within 4.5 Å of a neighboring carboxylic acid or a bridging water molecule. This cluster could serve as an internal ‘proton reservoir’ facilitating fast protonation of QB− that could occur at a rate greater than that attainable by proton uptake from solution.


Biochemistry | 2009

Redox characterization of the FeS protein mitoNEET and impact of thiazolidinedione drug binding

Daniel W. Bak; John A. Zuris; Mark L. Paddock; Patricia A. Jennings; Sean J. Elliott

MitoNEET is a small mitochondrial protein that has been identified recently as a target for the thiazolidinedione (TZD) class of diabetes drugs. MitoNEET also binds a unique three-Cys- and one-His-ligated [corrected] [2Fe-2S] cluster. Here we use protein film voltammetry (PFV) as a means to probe the redox properties of mitoNEET and demonstrate the direct impact of TZD drug binding upon the redox chemistry of the FeS cluster. When TZDs bind, the midpoint potential at pH 7 is lowered by more than 100 mV, shifting from approximately 0 to -100 mV. In contrast, a His87Cys mutant negates the ability of TZDs to affect the midpoint potential, suggesting a model of drug binding in which His87 is critical to communication with the FeS center of mitoNEET.

Collaboration


Dive into the Mark L. Paddock's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rachel Nechushtai

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. Feher

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John A. Zuris

University of California

View shared research outputs
Top Co-Authors

Avatar

Herbert L. Axelrod

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

Ron Mittler

University of North Texas

View shared research outputs
Top Co-Authors

Avatar

Jacques Breton

University of East Anglia

View shared research outputs
Researchain Logo
Decentralizing Knowledge