Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John B. Bradford is active.

Publication


Featured researches published by John B. Bradford.


Ecological Applications | 2013

Effects of thinning on drought vulnerability and climate response in north temperate forest ecosystems

Anthony W. D'Amato; John B. Bradford; Shawn Fraver; Brian J. Palik

Reducing tree densities through silvicultural thinning has been widely advocated as a strategy for enhancing resistance and resilience to drought, yet few empirical evaluations of this approach exist. We examined detailed dendrochronological data from a long-term (> 50 years) replicated thinning experiment to determine if density reductions conferred greater resistance and/or resilience to droughts, assessed by the magnitude of stand-level growth reductions. Our results suggest that thinning generally enhanced drought resistance and resilience; however, this relationship showed a pronounced reversal over time in stands maintained at lower tree densities. Specifically, lower-density stands exhibited greater resistance and resilience at younger ages (49 years), yet exhibited lower resistance and resilience at older ages (76 years), relative to higher-density stands. We attribute this reversal to significantly greater tree sizes attained within the lower-density stands through stand development, which in turn increased tree-level water demand during the later droughts. Results from response-function analyses indicate that thinning altered growth-climate relationships, such that higher-density stands were more sensitive to growing-season precipitation relative to lower-density stands. These results confirm the potential of density management to moderate drought impacts on growth, and they highlight the importance of accounting for stand structure when predicting climate-change impacts to forests.


Ecosystems | 2006

Ecohydrology and the Partitioning AET Between Transpiration and Evaporation in a Semiarid Steppe

William K. Lauenroth; John B. Bradford

Water availability defines and is the most frequent control on processes in arid and semiarid ecosystems. Despite widespread recognition of the importance of water in dry areas, knowledge about key processes in the water balance is surprisingly limited. How water is partitioned between evaporation and transpiration is an area about which ecosystem ecologists have almost no information. We used a daily time step soil water model and 39 years of data to describe the ecohydrology of a shortgrass steppe and investigate how manipulation of soil and vegetation variables influenced the partitioning of water loss between evaporation and transpiration. Our results emphasize the overwhelming importance of two environmental factors in influencing water balance processes in the semiarid shortgrass steppe; high and relatively constant evaporative demand of the atmosphere and a low and highly variable precipitation regime. These factors explain the temporal dominance of dry soil. Annually and during the growing season 60–80% of the days have soil water potentials less than or equal to −1.5 MPa. In the 0–15 cm layer, evaporation accounts for half of total water loss and at 15–30 cm it accounts for one third of the loss. Annual transpiration/actual evapotranspiration (T/AET) ranged from 0.4–0.75 with a mean of 0.51. The key controls on both T/AET and evaporation/actual evapotranspiration in order of their importance were aboveground biomass, seasonality of biomass, soil texture, and precipitation. High amounts of biomass and late timing of the peak resulted in the highest values of T/AET.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Temperature drives global patterns in forest biomass distribution in leaves, stems, and roots

Peter B. Reich; Yunjian Luo; John B. Bradford; Hendrik Poorter; Charles H. Perry; Jacek Oleksyn

Significance Do forests in cold or dry climate zones distribute more resources in roots to enhance uptake of water and nutrients, which are scarce in such climates? Despite its importance to forest ecology and global carbon cycle modeling, this question is unanswered at present. To answer this question, we compiled and analyzed a large dataset (>6,200 forests, 61 countries) and determined that the proportion of total forest biomass in roots is greater and in foliage is smaller in increasingly cold climates. Surprisingly, allocation to roots or foliage was unrelated to aridity. These findings allow, for the first time to our knowledge, biogeographically explicit mapping of global root carbon pools, which will be useful for assessing climate change impacts on forest carbon dynamics and sequestration. Whether the fraction of total forest biomass distributed in roots, stems, or leaves varies systematically across geographic gradients remains unknown despite its importance for understanding forest ecology and modeling global carbon cycles. It has been hypothesized that plants should maintain proportionally more biomass in the organ that acquires the most limiting resource. Accordingly, we hypothesize greater biomass distribution in roots and less in stems and foliage in increasingly arid climates and in colder environments at high latitudes. Such a strategy would increase uptake of soil water in dry conditions and of soil nutrients in cold soils, where they are at low supply and are less mobile. We use a large global biomass dataset (>6,200 forests from 61 countries, across a 40 °C gradient in mean annual temperature) to address these questions. Climate metrics involving temperature were better predictors of biomass partitioning than those involving moisture availability, because, surprisingly, fractional distribution of biomass to roots or foliage was unrelated to aridity. In contrast, in increasingly cold climates, the proportion of total forest biomass in roots was greater and in foliage was smaller for both angiosperm and gymnosperm forests. These findings support hypotheses about adaptive strategies of forest trees to temperature and provide biogeographically explicit relationships to improve ecosystem and earth system models. They also will allow, for the first time to our knowledge, representations of root carbon pools that consider biogeographic differences, which are useful for quantifying whole-ecosystem carbon stocks and cycles and for assessing the impact of climate change on forest carbon dynamics.


Journal of Vegetation Science | 2006

Controls over invasion of Bromus tectorum: The importance of climate, soil, disturbance and seed availability

John B. Bradford; William K. Lauenroth

Abstract Question: Predicting the future abundance and distribution of invasive plants requires knowing how they respond to environmental conditions. In arid and semi-arid ecosystems where water is a limiting resource, environmental conditions and disturbance patterns influence invasions by altering acquisition and utilization of water over space and time. We ask: 1. How do variations in climatic and soil properties influence temporal soil water dynamics? 2. How does this variation affect the establishment of Bromus tectorum (cheatgrass), a cool-season annual grass that has successfully colonized much of the U.S. Great Basin? Location: Short-grass Steppe in northeastern Colorado, USA; Arid Lands Ecology reserve in southeastern Washington, USA; and the Patagonian steppe of the Chubut province in Argentina. Methods: We utilized a soil water model to simulate seasonal soil water dynamics in multiple combinations of climatic and soil properties. In addition, we utilized a gap dynamics model to simulate the impact of disturbance regime and seed availability on competition between B. tectorum and native plants. Results: Our results suggest that climate is very important, but that soil properties do not significantly influence the probability of observing conditions suitable for B. tectorum establishment. Results of the plant competition model indicate that frequent disturbance causes more Bromus tectorum in invaded areas and higher seed availability causes faster invasion. Conclusions: These results imply a general framework for understanding Bromus tectorum invasion in which climatic conditions dictate which areas are susceptible to invasion, disturbance regime dictates the severity of invasion and seed availability dictates the speed of invasion.


Frontiers in Ecology and the Environment | 2012

Recognizing trade-offs in multi-objective land management

John B. Bradford; Anthony W. D'Amato

As natural resource management and conservation goals expand and evolve, practitioners and policy makers are increasingly seeking options that optimize benefits among multiple, often contradictory objectives. Here, we describe a simple approach for quantifying the consequences of alternative management options in terms of benefits and trade-offs among multiple objectives. We examine two long-term forest management experiments that span several decades of stand (forest tree community) development and identify substantial trade-offs among carbon cycling and ecological complexity objectives. In addition to providing improved understanding of the long-term consequences of various management options, the results of these experiments show that positive benefits resulting from some management options are often associated with large trade-offs among individual objectives. The approach to understanding benefits and trade-offs presented here provides a simple yet flexible framework for quantitatively assessing the ...


Canadian Journal of Forest Research | 2010

Age-related patterns of forest complexity and carbon storage in pine and aspen-birch ecosystems of northern Minnesota, USA.

John B. Bradford; Douglas N. Kastendick

Forest managers are seeking strategies to create stands that can adapt to new climatic conditions and simultaneously help mitigate increases in atmospheric CO2. Adaptation strategies often focus on enhancing resilience by maximizing forest complexity in terms of species composition and size structure, while mitigation involves sustaining carbon storage and sequestration. Altered stand age is a fundamental consequence of forest management, and stand age is a powerful predictor of ecosystem structure and function in even-aged stands. However, the relationship between stand age and either complexity or carbon storage and sequestration, especially trade-offs between the two, are not well characterized. We quantified these relationships in clearcut-origin, unmanaged pine and aspen chronosequences ranging from 130 years in northern Minnesota. Complexity generally increased with age, although compositional complexity changed more over time in aspen forests and structural complexity changed more over time in pine stands. Although individual carbon pools displayed various relationships with stand age, total carbon storage increased with age, whereas carbon sequestration, inferred from changes in storage, decreased sharply with age. These results illustrate the carbon and complexity consequences of varying forest harvest rotation length to favor younger or older forests and provide insight into trade-offs between these potentially conflicting management objectives.


Ecosystems | 2013

Woody debris volume depletion through decay: Implications for biomass and carbon accounting

Shawn Fraver; Amy M. Milo; John B. Bradford; Anthony W. D’Amato; Laura S. Kenefic; Brian J. Palik; Christopher W. Woodall; John C. Brissette

Woody debris decay rates have recently received much attention because of the need to quantify temporal changes in forest carbon stocks. Published decay rates, available for many species, are commonly used to characterize deadwood biomass and carbon depletion. However, decay rates are often derived from reductions in wood density through time, which when used to model biomass and carbon depletion are known to underestimate rate loss because they fail to account for volume reduction (changes in log shape) as decay progresses. We present a method for estimating changes in log volume through time and illustrate the method using a chronosequence approach. The method is based on the observation, confirmed herein, that decaying logs have a collapse ratio (cross-sectional height/width) that can serve as a surrogate for the volume remaining. Combining the resulting volume loss with concurrent changes in wood density from the same logs then allowed us to quantify biomass and carbon depletion for three study species. Results show that volume, density, and biomass follow distinct depletion curves during decomposition. Volume showed an initial lag period (log dimensions remained unchanged), even while wood density was being reduced. However, once volume depletion began, biomass loss (the product of density and volume depletion) occurred much more rapidly than density alone. At the temporal limit of our data, the proportion of the biomass remaining was roughly half that of the density remaining. Accounting for log volume depletion, as demonstrated in this study, provides a comprehensive characterization of deadwood decomposition, thereby improving biomass-loss and carbon-accounting models.


Ecology | 2005

THE IMPACT OF CROPPING ON PRIMARY PRODUCTION IN THE U.S. GREAT PLAINS

John B. Bradford; William K. Lauenroth; Ingrid C. Burke

Land use and altered carbon dynamics are two of the primary components of global change, and the effect of land use on carbon cycling is a crucial issue in regional scale biogeochemistry. Previous studies have shown that climate and soil conditions control net primary production (NPP) at regional scales, and that agricultural land use can influence NPP at local scales through altered water availability and carbon allocation patterns. However, few studies have attempted to quantify the effect of cultivation on NPP at regional scales, and no studies have examined this relationship for the most heavily cultivated region of the United States, the Great Plains. We quantified current regional aboveground and belowground productivity (including cultivation) for nine years on a county basis from (1) USDA agricultural census data, and (2) STATSGO range site production values. By comparing these data with values of native vegetation NPP (precultivation) derived from STATSGO, we estimated that cultivation is increasing regional NPP by ∼10%, or 0.046 Pg C/yr. In addition, we examined the relationship between cultivation of particular crops and NPP change and characterized the influence of individual crops on primary productivity.


Global Change Biology | 2015

Forest ecosystem respiration estimated from eddy covariance and chamber measurements under high turbulence and substantial tree mortality from bark beetles

Heather N. Speckman; John M. Frank; John B. Bradford; Brianna L. Miles; William J. Massman; William J. Parton; Michael G. Ryan

Eddy covariance nighttime fluxes are uncertain due to potential measurement biases. Many studies report eddy covariance nighttime flux lower than flux from extrapolated chamber measurements, despite corrections for low turbulence. We compared eddy covariance and chamber estimates of ecosystem respiration at the GLEES Ameriflux site over seven growing seasons under high turbulence [summer night mean friction velocity (u*) = 0.7 m s(-1)], during which bark beetles killed or infested 85% of the aboveground respiring biomass. Chamber-based estimates of ecosystem respiration during the growth season, developed from foliage, wood, and soil CO2 efflux measurements, declined 35% after 85% of the forest basal area had been killed or impaired by bark beetles (from 7.1 ± 0.22 μmol m(-2) s(-1) in 2005 to 4.6 ± 0.16 μmol m(-2) s(-1) in 2011). Soil efflux remained at ~3.3 μmol m(-2) s(-1) throughout the mortality, while the loss of live wood and foliage and their respiration drove the decline of the chamber estimate. Eddy covariance estimates of fluxes at night remained constant over the same period, ~3.0 μmol m(-2) s(-1) for both 2005 (intact forest) and 2011 (85% basal area killed or impaired). Eddy covariance fluxes were lower than chamber estimates of ecosystem respiration (60% lower in 2005, and 32% in 2011), but the mean night estimates from the two techniques were correlated within a year (r(2) from 0.18 to 0.60). The difference between the two techniques was not the result of inadequate turbulence, because the results were robust to a u* filter of >0.7 m s(-1). The decline in the average seasonal difference between the two techniques was strongly correlated with overstory leaf area (r(2) = 0.92). The discrepancy between methods of respiration estimation should be resolved to have confidence in ecosystem carbon flux estimates.


Ecosystems | 2006

The Influence of Climate, Soils, Weather, and Land Use on Primary Production and Biomass Seasonality in the US Great Plains

John B. Bradford; William K. Lauenroth; Ingrid C. Burke; José M. Paruelo

Identifying the conditions and mechanisms that control ecosystem processes, such as net primary production, is a central goal of ecosystem ecology. Ideas have ranged from single limiting-resource theories to colimitation by nutrients and climate, to simulation models with edaphic, climatic, and competitive controls. Although some investigators have begun to consider the influence of land-use practices, especially cropping, few studies have quantified the impact of cropping at large scales relative to other known controls over ecosystem processes. We used a 9-year record of productivity, biomass seasonality, climate, weather, soil conditions, and cropping in the US Great Plains to quantify the controls over spatial and temporal patterns of net primary production and to estimate sensitivity to specific driving variables. We considered climate, soil conditions, and long-term average cropping as controls over spatial patterns, while weather and interannual cropping variations were used as controls over temporal variability. We found that variation in primary production is primarily spatial, whereas variation in seasonality is more evenly split between spatial and temporal components. Our statistical (multiple linear regression) models explained more of the variation in the amount of primary production than in its seasonality, and more of the spatial than the temporal patterns. Our results indicate that although climate is the most important variable for explaining spatial patterns, cropping explains a substantial amount of the residual variability. Soil texture and depth contributed very little to our models of spatial variability. Weather and cropping deviation both made modest contributions to the models of temporal variability. These results suggest that the controls over seasonality and temporal variation are not well understood. Our sensitivity analysis indicates that production is more sensitive to climate than to weather and that it is very sensitive to cropping intensity. In addition to identifying potential gaps in out knowledge, these results provide insight into the probable long- and short-term ecosystem response to changes in climate, weather, and cropping.

Collaboration


Dive into the John B. Bradford's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian J. Palik

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael G. Ryan

Colorado State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Randall K. Kolka

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar

Michael C. Duniway

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Seth M. Munson

United States Geological Survey

View shared research outputs
Researchain Logo
Decentralizing Knowledge