Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael C. Duniway is active.

Publication


Featured researches published by Michael C. Duniway.


Ecology Letters | 2013

A test of critical thresholds and their indicators in a desertification-prone ecosystem: more resilience than we thought.

Brandon T. Bestelmeyer; Michael C. Duniway; Darren K. James; Laura M. Burkett; Kris M. Havstad

Theoretical models predict that drylands can cross critical thresholds, but experimental manipulations to evaluate them are non-existent. We used a long-term (13-year) pulse-perturbation experiment featuring heavy grazing and shrub removal to determine if critical thresholds and their determinants can be demonstrated in Chihuahuan Desert grasslands. We asked if cover values or patch-size metrics could predict vegetation recovery, supporting their use as early-warning indicators. We found that season of grazing, but not the presence of competing shrubs, mediated the severity of grazing impacts on dominant grasses. Recovery occurred at the same rate irrespective of grazing history, suggesting that critical thresholds were not crossed, even at low cover levels. Grass cover, but not patch size metrics, predicted variation in recovery rates. Some transition-prone ecosystems are surprisingly resilient; management of grazing impacts and simple cover measurements can be used to avert undesired transitions and initiate restoration.


Frontiers in Ecology and the Environment | 2015

Desertification, land use, and the transformation of global drylands

Brandon T. Bestelmeyer; Gregory S. Okin; Michael C. Duniway; Steven R. Archer; Nathan F. Sayre; Jebediah C Williamson; Jeffrey E. Herrick

Desertification is an escalating concern in global drylands, yet assessments to guide management and policy responses are limited by ambiguity concerning the definition of “desertification” and what processes are involved. To improve clarity, we propose that assessments of desertification and land transformation be placed within a state change–land-use change (SC–LUC) framework. This framework considers desertification as state changes occurring within the context of particular land uses (eg rangeland, cropland) that interact with land-use change. State changes that can be readily reversed are distinguished from regime shifts, which are state changes involving persistent alterations to vegetation or soil properties. Pressures driving the transformation of rangelands to other types of land uses may be low, fluctuating, or high, and may influence and be influenced by state change. We discuss how the SC–LUC perspective can guide more effective assessment of desertification and management of drylands.


Ecosphere | 2011

Cross-system comparisons elucidate disturbance complexities and generalities

Debra P. C. Peters; Ariel E. Lugo; F. Stuart Chapin; Steward T. A. Pickett; Michael C. Duniway; Adrian V. Rocha; Frederick J. Swanson; Christine M Laney; Julia A. Jones

Given that ecological effects of disturbance have been extensively studied in many ecosystems, it is surprising that few quantitative syntheses across diverse ecosystems have been conducted. Multi-system studies tend to be qualitative because they focus on disturbance types that are difficult to measure in an ecologically relevant way. In addition, synthesis of existing studies across systems or disturbance types is challenging because sufficient information needed for analysis is not easily available. Theoretical advances and improved predictions can be advanced by generalizations obtained from synthesis activities that include multiple sites, ecosystems, and disturbance events. Building on existing research, we present a conceptual framework and an operational analog to integrate this rich body of knowledge and to promote quantitative comparisons of disturbance effects across different types of ecosystems and disturbances. This framework recognizes individual disturbance events that consist of three quantifiable components: (1) environmental drivers, (2) initial system properties, and (3) physical and biological mechanisms of effect, such as deposition, compaction, and combustion. These components result in biotic and abiotic legacies that can interact with subsequent drivers and successional processes to influence system response. Through time, a coarse-scale quasi-equilibrial state can be reached where variation in drivers interacting with biotic processes and feedbacks internal to the system results in variability in dynamics. At any time, a driver of sufficient magnitude can push the system beyond its realm of natural variability to initiate a new kind of event. We use long-term data from diverse terrestrial ecosystems to illustrate how our approach can facilitate cross-system comparisons, and provide new insights to the role of disturbance in ecological systems. We also provide key disturbance characteristics and measurements needed to promote future quantitative comparisons across ecosystems.


Oecologia | 2010

Spatial and temporal variability of plant-available water in calcium carbonate-cemented soils and consequences for arid ecosystem resilience.

Michael C. Duniway; Jeffrey E. Herrick; H. Curtis Monger

Increased variability in precipitation, including frequency of drought, is predicted for many arid and semiarid regions globally. The ability of soils to retain water can increase resilience by buffering vegetation communities against precipitation extremes. Little is known, however, about water retention by carbonate-cemented soil horizons, which occur extensively in arid and semiarid ecosystems. It has been speculated that they may significantly modify vertical and temporal distribution of plant-available water (PAW). To investigate this hypothesis, PAW was monitored at three sites in a mixed shrub-grass community in southern New Mexico, USA, across soils with differing degrees of carbonate horizon development: no carbonate horizon, a horizon partially cemented with carbonates (calcic), and a horizon continuously cemented with carbonates (petrocalcic). Results are presented from 3xa0years that included extremely dry and wet periods. Both carbonate-cemented horizons absorbed and retained significantly greater amounts of PAW for several months following an extremely wet winter and summer compared to the non-carbonate soil. Following a wet summer, continuously cemented horizons retained very high PAW (16–18% volumetric or ~72–80% of soil water holding capacity) through early spring of the following year, more than double the PAW retained by similar depths in the non-carbonate soil. Drying dynamics indicate both carbonate-cemented horizons release stored water into the grass rooting zone during growing seasons following extreme wet events. Water dynamics of these horizons during extreme events provide a mechanism to explain previous observations that perennial grasses exhibit greater resilience to drought when carbonate-cemented horizons occur at shallow depths (<50xa0cm). Water holding capacity of the entire profile, including horizons cemented with carbonates, should be considered when evaluating the potential resilience of vegetation communities to disturbance, including the increased variability in precipitation expected to occur as a result of global climate change.


Frontiers in Ecology and the Environment | 2015

Legacy effects in linked ecological–soil–geomorphic systems of drylands

Curtis Monger; Osvaldo E. Sala; Michael C. Duniway; Haim Goldfus; Isaac A. Meir; Rosa M Poch; Heather L. Throop; Enrique R. Vivoni

A legacy effect refers to the impacts that previous conditions have on current processes or properties. Legacies have been recognized by many disciplines, from physiology and ecology to anthropology and geology. Within the context of climatic change, ecological legacies in drylands (eg vegetative patterns) result from feedbacks between biotic, soil, and geomorphic processes that operate at multiple spatial and temporal scales. Legacy effects depend on (1) the magnitude of the original phenomenon, (2) the time since the occurrence of the phenomenon, and (3) the sensitivity of the ecological–soil–geomorphic system to change. Here we present a conceptual framework for legacy effects at short-term (days to months), medium-term (years to decades), and long-term (centuries to millennia) timescales, which reveals the ubiquity of such effects in drylands across research disciplines.


Nature Communications | 2017

Climate change reduces extent of temperate drylands and intensifies drought in deep soils

Daniel R. Schlaepfer; John B. Bradford; William K. Lauenroth; Seth M. Munson; Britta Tietjen; Sonia A. Hall; Scott D. Wilson; Michael C. Duniway; Gensuo Jia; David A. Pyke; Ariuntsetseg Lkhagva; Khishigbayar Jamiyansharav

Drylands cover 40% of the global terrestrial surface and provide important ecosystem services. While drylands as a whole are expected to increase in extent and aridity in coming decades, temperature and precipitation forecasts vary by latitude and geographic region suggesting different trajectories for tropical, subtropical, and temperate drylands. Uncertainty in the future of tropical and subtropical drylands is well constrained, whereas soil moisture and ecological droughts, which drive vegetation productivity and composition, remain poorly understood in temperate drylands. Here we show that, over the twenty first century, temperate drylands may contract by a third, primarily converting to subtropical drylands, and that deep soil layers could be increasingly dry during the growing season. These changes imply major shifts in vegetation and ecosystem service delivery. Our results illustrate the importance of appropriate drought measures and, as a global study that focuses on temperate drylands, highlight a distinct fate for these highly populated areas.


Ecological Applications | 2012

Hierarchical analysis of vegetation dynamics over 71 years: soil-rainfall interactions in a Chihuahuan Desert ecosystem.

Dawn M. Browning; Michael C. Duniway; Andrea S. Laliberte; Albert Rango

Proliferation of woody plants in grasslands and savannas is a persistent problem globally. This widely observed shift from grass to shrub dominance in rangelands worldwide has been heterogeneous in space and time largely due to cross-scale interactions among soils, climate, and land-use history. Our objective was to use a hierarchical framework to evaluate the relationship between spatial patterns in soil properties and long-term shrub dynamics in the northern Chihuahuan Desert of New Mexico, USA. To meet this objective, shrub patch dynamics from 1937 to 2008 were characterized at patch and landscape scales using historical imagery and a recent digital soils map. Effects of annual precipitation on patch dynamics on two soils revealed strong correlations between shrub growth on deep sandy soils and above-average rainfall years (r = 0.671, P = 0.034) and shrub colonization and below-average rainfall years on shallow sandy soils (r = 0.705, P = 0.023). Patch-level analysis of demographic patterns revealed significant differences between shrub patches on deep and shallow sandy soils during periods of above- and below-average rainfall. Both deep and shallow sandy soils exhibited low shrub cover in 1937 (1.0% +/- 2.3% and 0.3% +/- 1.3%, respectively [mean +/- SD]) and were characterized by colonization or appearance of new patches until 1960. However, different demographic responses to the cessation of severe drought on the two soils and increased frequency of wet years after 1960 have resulted in very different endpoints. In 2008 a shrubland occupied the deep sandy soils with cover at 19.8% +/- 9.1%, while a shrub-dominated grassland occurred on the shallow sandy soils with cover at 9.3% +/- 7.2%. Present-day shrub vegetation constitutes a shifting mosaic marked by the coexistence of patches at different stages of development. Management implications of this long-term multi-scale assessment of vegetation dynamics support the notion that soil properties may constrain grassland remediation. Such efforts on sandy soils should be focused on sites characterized by near-surface water-holding capacity, as those lacking available water-holding capacity in the shallow root zone pose challenges to grass recovery and survival.


Global Change Biology | 2015

Desert grassland responses to climate and soil moisture suggest divergent vulnerabilities across the southwestern United States.

Jennifer R. Gremer; John B. Bradford; Seth M. Munson; Michael C. Duniway

Climate change predictions include warming and drying trends, which are expected to be particularly pronounced in the southwestern United States. In this region, grassland dynamics are tightly linked to available moisture, yet it has proven difficult to resolve what aspects of climate drive vegetation change. In part, this is because it is unclear how heterogeneity in soils affects plant responses to climate. Here, we combine climate and soil properties with a mechanistic soil water model to explain temporal fluctuations in perennial grass cover, quantify where and the degree to which incorporating soil water dynamics enhances our ability to understand temporal patterns, and explore the potential consequences of climate change by assessing future trajectories of important climate and soil water variables. Our analyses focused on long-term (20-56xa0years) perennial grass dynamics across the Colorado Plateau, Sonoran, and Chihuahuan Desert regions. Our results suggest that climate variability has negative effects on grass cover, and that precipitation subsidies that extend growing seasons are beneficial. Soil water metrics, including the number of dry days and availability of water from deeper (>30xa0cm) soil layers, explained additional grass cover variability. While individual climate variables were ranked as more important in explaining grass cover, collectively soil water accounted for 40-60% of the total explained variance. Soil water conditions were more useful for understanding the responses of C3 than C4 grass species. Projections of water balance variables under climate change indicate that conditions that currently support perennial grasses will be less common in the future, and these altered conditions will be more pronounced in the Chihuahuan Desert and Colorado Plateau. We conclude that incorporating multiple aspects of climate and accounting for soil variability can improve our ability to understand patterns, identify areas of vulnerability, and predict the future of desert grasslands.


Oecologia | 2015

Pulse-drought atop press-drought: unexpected plant responses and implications for dryland ecosystems

David L. Hoover; Michael C. Duniway; Jayne Belnap

In drylands, climate change is predicted to cause chronic reductions in water availability (press-droughts) through reduced precipitation and increased temperatures as well as increase the frequency and intensity of short-term extreme droughts (pulse-droughts). These changes in precipitation patterns may have profound ecosystem effects, depending on the sensitivities of the dominant plant functional types (PFTs). Here we present the responses of four Colorado Plateau PFTs to an experimentally imposed, 4-year, press-drought during which a natural pulse-drought occurred. Our objectives were to (1) identify the drought sensitivities of the PFTs, (2) assess the additive effects of the press- and pulse-drought, and (3) examine the interactive effects of soils and drought. Our results revealed that the C3 grasses were the most sensitive PFT to drought, the C3 shrubs were the most resistant, and the C4 grasses and shrubs had intermediate drought sensitivities. Although we expected the C3 grasses would have the greatest response to drought, the higher resistance of C3 shrubs relative to the C4 shrubs was contrary to our predictions based on the higher water use efficiency of C4 photosynthesis. Also, the additive effects of press- and pulse-droughts caused high morality in C3 grasses, which has large ecological and economic ramifications for this region. Furthermore, despite predictions based on the inverse texture hypothesis, we observed no interactive effects of soils with the drought treatment on cover or mortality. These results suggest that plant responses to droughts in drylands may differ from expectations and have large ecological effects if press- and pulse-droughts push species beyond physiological and mortality thresholds.


Journal of Soil and Water Conservation | 2012

A holistic strategy for adaptive land management

Jeffrey E. Herrick; Michael C. Duniway; David A. Pyke; Brandon T. Bestelmeyer; Skye Wills; Joel R. Brown; Jason W. Karl; Kris M. Havstad

Adaptive management is widely applied to natural resources management (Holling 1973; Walters and Holling 1990). Adaptive management can be generally defined as an iterative decision-making process that incorporates formulation of management objectives, actions designed to address these objectives, monitoring of results, and repeated adaptation of management until desired results are achieved (Brown and MacLeod 1996; Savory and Butterfield 1999). However, adaptive management is often criticized because very few projects ever complete more than one cycle, resulting in little adaptation and little knowledge gain (Lee 1999; Walters 2007). One significant criticism is that adaptive management is often used as a justification for undertaking actions with uncertain outcomes or as a surrogate for the development of specific, measurable indicators and monitoring programs (Lee 1999; Ruhl 2007). In this paper, we argue for a more holistic and systematic approach to adaptive management. We define holistic adaptive land management (HALM) as a refinement of adaptive management that requires (1) a process-based understanding of ecosystem dynamics and ecological mechanisms, (2) a willingness and ability to identify and consider all possible management alternatives, (3) rigorous monitoring of management effects, and (4) constant adaptation of management based on monitoring data and associated observations. Thus, HALM requires both…

Collaboration


Dive into the Michael C. Duniway's collaboration.

Top Co-Authors

Avatar

Jeffrey E. Herrick

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Jason W. Karl

New Mexico State University

View shared research outputs
Top Co-Authors

Avatar

John B. Bradford

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jayne Belnap

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Seth M. Munson

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Travis W. Nauman

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

David A. Pyke

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeffrey K. Gillan

New Mexico State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge