Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John B. Dame is active.

Publication


Featured researches published by John B. Dame.


Molecular Microbiology | 2001

Co-ordinated programme of gene expression during asexual intraerythrocytic development of the human malaria parasite Plasmodium falciparum revealed by microarray analysis.

Choukri Ben Mamoun; Ilya Y. Gluzman; Christian Hott; Sandra MacMillan; Aloka S. Amarakone; Dustin L. Anderson; Jane M.-R. Carlton; John B. Dame; Debopam Chakrabarti; Rodger K. Martin; Bernard H. Brownstein; Daniel E. Goldberg

Plasmodium falciparum is a protozoan parasite responsible for the most severe forms of human malaria. All the clinical symptoms and pathological changes seen during human infection are caused by the asexual blood stages of Plasmodium. Within host red blood cells, the parasite undergoes enormous developmental changes during its maturation. In order to analyse the expression of genes during intraerythrocytic development, DNA microarrays were constructed and probed with stage‐specific cDNA. Developmental upregulation of specific mRNAs was found to cluster into functional groups and revealed a co‐ordinated programme of gene expression. Those involved in protein synthesis (ribosomal proteins, translation factors) peaked early in development, followed by those involved in metabolism, most dramatically glycolysis genes. Adhesion/invasion genes were turned on later in the maturation process. At the end of intraerythrocytic development (late schizogony), there was a general shut‐off of gene expression, although a small set of genes, including a number of protein kinases, were turned on at this stage. Nearly all genes showed some regulation over the course of development. A handful of genes remained constant and should be useful for normalizing mRNA levels between stages. These data will facilitate functional analysis of the P. falciparum genome and will help to identify genes with a critical role in parasite progression and multiplication in the human host.


Journal of Parasitology | 1999

Multiple DNA markers differentiate Sarcocystis neurona and Sarcocystis falcatula.

Susan M. Tanhauser; Charles A. Yowell; Tim J. Cutler; Ellis C. Greiner; Robert J. MacKay; John B. Dame

Studies designed to investigate the causative agent of equine protozoal myeloencephalitis and its life cycle have been hampered by the marked similarity of Sarcocystis neurona to other Sarcocystis spp. present in the same definitive host. Random-amplified polymorphic DNA techniques were used to amplify DNA from isolates of S. neurona and Sarcocystis falcatula. DNA sequence analysis of polymerase chain reaction (PCR) products was then used to design PCR primers to amplify specific Sarcocystis spp. DNA products. The ribosomal RNA internal transcribed spacer was also amplified and compared between S. neurona and S. falcatula. Useful sequence heterogeneity between the 2 organisms was identified, creating potential markers to distinguish these Sarcocystis spp. These markers were used to characterize Sarcocystis isolates from opossum (Didelphis virginiana) feces. Our data suggest that S. neurona and S. falcatula can be differentiated with these markers and that multiple Sarcocystis spp., including S. neurona and S. falcatula, are shed by opossums.


Molecular and Biochemical Parasitology | 1994

Sequence, expression and modeled structure of an aspartic proteinase from the human malaria parasite Plasmodium falciparum

John B. Dame; G.Roman Reddy; Charles A. Yowell; Ben M. Dunn; John Kay; Colin Berry

A clone encoding the aspartic proteinase (PFAPD) from Plasmodium falciparum strain HB3 was obtained during the course of a project designed to sequence and identify the protein coding regions of the parasites genome. The protein encoded by the clone contains a sequence identical to the N-terminal sequence determined for an aspartic proteinase isolated from the digestive vacuole of P. falciparum and demonstrated to participate in the hemoglobin digestive pathway (D. Goldberg, personal communication). The translated polypeptide sequence encompasses a number of features characteristic of aspartic proteinases, having > 30% identity and > 50% similarity overall to human cathepsin D, cathepsin E and renin. A model of the three-dimensional structure of PFAPD was constructed using rule-based procedures. This confirms that the primary sequence may be folded as a single chain into a three dimensional structure closely resembling those of other known aspartic proteinases. It includes a lengthy prosegment, two typical-hydrophobic-hydrophobic-Asp-Thr/Ser-Gly motifs and a tyrosine residue positioned in a beta-hairpin loop. The distribution of hydrophobic residues throughout the active site cleft is indicative of a likely preference for hydrophobic polypeptide substrates. The recombinant form of this enzyme expressed using the pGEX2T vector in Escherichia coli is active in digesting hemoglobin at acidic pH and in hydrolyzing a synthetic peptide corresponding to the putative initial cleavage site in hemoglobin. Activity is inhibited completely by pepstatin, confirming the identity of PFAPD as a member of the aspartic proteinase family. Specific mRNA for PFAPD is expressed in the erythrocytic stages of the life cycle.


Evolution | 1992

Unusual population genetics of a parasitic nematode : mtDNA variation within and among populations

Michael S. Blouin; John B. Dame; CHRISTrNE A. Tarrant; Charles H. Courtney

Very little is known about the distribution of genetic variance within and among populations of parasitic helminths. In this study we used mitochondrial DNA (mtDNA) restriction fragment analysis to describe the population genetic structure of Ostertagia ostertagi, a nematode parasite of cattle, in the United States. Estimates of within‐population mtDNA diversity are 5 to 10 times greater than typical estimates reported for species in other taxa. Although populations are genetically differentiated for a key life–history trait, greater than 98% of the total genetic diversity is partitioned within populations, and the geographic distribution of individual mtDNA haplotypes suggests high gene flow among populations.


International Journal for Parasitology | 2001

The striped skunk (Mephitis mephitis) is an intermediate host for Sarcocystis neurona

M.A Cheadle; Charles A. Yowell; Debra C. Sellon; Melissa T. Hines; P.E Ginn; Antoinette E. Marsh; John B. Dame; Ellis C. Greiner

Striped skunks, initially negative for antibodies to Sarcocystis neurona, formed sarcocysts in skeletal muscles after inoculation with S. neurona sporocysts collected from a naturally infected Virginia opossum (Didelphis virginiana). Skunks developed antibodies to S. neurona by immunoblot and muscles containing sarcocysts were fed to laboratory-reared opossums which then shed sporulated Sarcocystis sporocysts in their faeces. Mean dimensions for sporocysts were 11.0 x 7.5 microm and each contained four sporozoites and a residuum. Sarcocysts from skunks and sporocysts from opossums fed infected skunk muscle were identified as S. neurona using PCR and DNA sequence analysis. A 2-month-old, S. neurona-naive pony foal was orally inoculated with 5 x 10(5) sporocysts. Commercial immunoblot for antibodies to S. neurona performed using CSF collected from the inoculated pony was low positive at 4 weeks p.i., positive at 6 weeks p.i., and strong positive at 8 weeks p.i. Gamma-interferon gene knockout mice inoculated with skunk/opossum derived sporocysts developed serum antibodies to S. neurona and clinical neurologic disease. Merozoites of S. neurona present in the lung, cerebrum, and cerebellum of mice were detected by immunohistochemistry using polyclonal antibodies to S. neurona. Based on the results of this study, the striped skunk is an intermediate host of S. neurona.


The Journal of Infectious Diseases | 2002

The Shikimate Pathway and Its Branches in Apicomplexan Parasites

Craig W. Roberts; Fiona Roberts; Russell E. Lyons; Michael J. Kirisits; Ernest Mui; John R. Finnerty; Jennifer J. Johnson; David J. P. Ferguson; John R. Coggins; Tino Krell; Graham H. Coombs; Wilbur K. Milhous; Dennis Kyle; Saul Tzipori; John W. Barnwell; John B. Dame; Jane M. Carlton; Rima McLeod

The shikimate pathway is essential for production of a plethora of aromatic compounds in plants, bacteria, and fungi. Seven enzymes of the shikimate pathway catalyze sequential conversion of erythrose 4-phosphate and phosphoenol pyruvate to chorismate. Chorismate is then used as a substrate for other pathways that culminate in production of folates, ubiquinone, napthoquinones, and the aromatic amino acids tryptophan, phenylalanine, and tyrosine. The shikimate pathway is absent from animals and present in the apicomplexan parasites Toxoplasma gondii, Plasmodium falciparum, and Cryptosporidium parvum. Inhibition of the pathway by glyphosate is effective in controlling growth of these parasites. These findings emphasize the potential benefits of developing additional effective inhibitors of the shikimate pathway. Such inhibitors may function as broad-spectrum antimicrobial agents that are effective against bacterial and fungal pathogens and apicomplexan parasites.


Molecular and Biochemical Parasitology | 1994

Analysis of expressed sequence tags from Plasmodium falciparum

Debopam Chakrabarti; G.Roman Reddy; John B. Dame; Ernesto C. Almira; Philip J. Laipis; Robert J. Ferl; Thomas P. Yang; Thomas C. Rowe; Sheldon M. Schuster

An initiative was undertaken to sequence all genes of the human malaria parasite Plasmodium falciparum in an effort to gain a better understanding at the molecular level of the parasite that inflicts much suffering in the developing world. 550 random complimentary DNA clones were partially sequenced from the intraerythrocytic form of the parasite as one of the approaches to analyze the transcribed sequences of its genome. The sequences, after editing, generated 389 expressed sequence tag sites and over 105 kb of DNA sequences. About 32% of these clones showed significant homology with other genes in the database. These clones represent 340 new Plasmodium falciparum expressed sequence tags.


Molecular Microbiology | 2007

Critical roles for the digestive vacuole plasmepsins of Plasmodium falciparum in vacuolar function

J. Alfredo Bonilla; Tonya D. Bonilla; Charles A. Yowell; Hisashi Fujioka; John B. Dame

Knockout mutants of Plasmodium falciparum lacking pfpm1, pfpm2 and pfhap (triple‐PM KO), and mutants lacking all four digestive vacuole (DV) plasmepsins (pfpm4, pfpm1, pfpm2 and pfhap; quadruple‐PM KO), were prepared by double cross‐over integration effecting chromosomal deletions of up to 14.6 kb. The triple‐PM KO was similar to the parental line (3D7) in growth rate, morphology and sensitivity to proteinase inhibitors. The quadruple‐PM KO showed a significantly slower rate of growth in standard medium, which manifested as delayed schizont maturation accompanied by reduced formation of haemozoin. In amino acid‐limited medium, the reduction in growth rate of the quadruple‐PM KO was pronounced. The sensitivity of both the triple‐ and quadruple‐PM KOs to six different HIV aspartic proteinase inhibitors was comparable to that of 3D7, thus establishing that the DV plasmepsins were not the primary targets of the antimalarial activity of these clinically important compounds. Electron microscopic analysis revealed the presence of multilamellar bodies resembling ceroid in the DV of the quadruple‐PM KO, and intermediates of the autophagic pathway accumulated as determined by Western blot analysis. Thus, the DV plasmepsins, although not essential, contribute significantly to the fitness of the parasite and are required for efficient degradation of endosomal vesicles delivered to the DV.


American Journal of Pathology | 2010

Plasmepsin 4-Deficient Plasmodium berghei Are Virulence Attenuated and Induce Protective Immunity against Experimental Malaria

Roberta Spaccapelo; Chris J. Janse; Sara Caterbi; Blandine Franke-Fayard; J. Alfredo Bonilla; Luke M. Syphard; Manlio Di Cristina; Tania Dottorini; Andrea Savarino; Antonio Cassone; Francesco Bistoni; Andrew P. Waters; John B. Dame; Andrea Crisanti

Plasmodium parasites lacking plasmepsin 4 (PM4), an aspartic protease that functions in the lysosomal compartment and contributes to hemoglobin digestion, have only a modest decrease in the asexual blood-stage growth rate; however, PM4 deficiency in the rodent malaria parasite Plasmodium berghei results in significantly less virulence than that for the parental parasite. P. berghei Deltapm4 parasites failed to induce experimental cerebral malaria (ECM) in ECM-susceptible mice, and ECM-resistant mice were able to clear infections. Furthermore, after a single infection, all convalescent mice were protected against subsequent parasite challenge for at least 1 year. Real-time in vivo parasite imaging and splenectomy experiments demonstrated that protective immunity acted through antibody-mediated parasite clearance in the spleen. This work demonstrates, for the first time, that a single Plasmodium gene disruption can generate virulence-attenuated parasites that do not induce cerebral complications and, moreover, are able to stimulate strong protective immunity against subsequent challenge with wild-type parasites. Parasite blood-stage attenuation should help identify protective immune responses against malaria, unravel parasite-derived factors involved in malarial pathologies, such as cerebral malaria, and potentially pave the way for blood-stage whole organism vaccines.


Antimicrobial Agents and Chemotherapy | 2001

New class of small nonpeptidyl compounds blocks Plasmodium falciparum development in vitro by inhibiting plasmepsins.

Suping Jiang; Sean T. Prigge; Lan Wei; Yu-e Gao; Thomas H. Hudson; Lucia Gerena; John B. Dame; Dennis E. Kyle

ABSTRACT Malarial parasites rely on aspartic proteases called plasmepsins to digest hemoglobin during the intraerythrocytic stage. Plasmepsins fromPlasmodium falciparum and Plasmodium vivax have been cloned and expressed for a variety of structural and enzymatic studies. Recombinant plasmepsins possess kinetic similarity to the native enzymes, indicating their suitability for target-based antimalarial drug development. We developed an automated assay of P. falciparum plasmepsin II andP. vivax plasmepsin to quickly screen compounds in the Walter Reed chemical database. A low-molecular-mass (346 Da) diphenylurea derivative (WR268961) was found to inhibit plasmepsins with a Ki of 1 to 6 μM. This compound appears to be selective for plasmepsin, since it is a poor inhibitor of the human aspartic protease cathepsin D (Ki greater than 280 μM). WR268961 inhibited the growth of P. falciparum strains W2 and D6, with 50% inhibitory concentrations ranging from 0.03 to 0.16 μg/ml, but was much less toxic to mammalian cells. The Walter Reed chemical database contains over 1,500 compounds with a diphenylurea core structure, 9 of which inhibit the plasmepsins, withKi values ranging from 0.05 to 0.68 μM. These nine compounds show specificity for the plasmepsins over human cathepsin D, but they are poor inhibitors of P. falciparum growth in vitro. Computational docking experiments indicate how diphenylurea compounds bind to the plasmepsin active site and inhibit the enzyme.

Collaboration


Dive into the John B. Dame's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Debra C. Sellon

Washington State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge