John B. Presloid
University of Toledo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by John B. Presloid.
Journal of Virology | 2010
Isabel S. Novella; John B. Presloid; Tong Zhou; Sarah D. Smith-Tsurkan; Bonnie E. Ebendick-Corpus; Ranendra N. Dutta; Kim L. Lust; Claus O. Wilke
ABSTRACT Virus strains with a history of repeated genetic bottlenecks frequently show a diminished ability to adapt compared to strains that do not have such a history. These differences in adaptability suggest differences in either the rate at which beneficial mutations are produced, the effects of beneficial mutations, or both. We tested these possibilities by subjecting four populations (two controls and two mutants with lower adaptabilities) to multiple replicas of a regimen of positive selection and then determining the fitnesses of the progeny through time and the changes in the consensus, full-length sequences of 56 genomes. We observed that at a given number of passages, the overall fitness gains observed for control populations were larger than fitness gains in mutant populations. However, these changes did not correlate with differences in the numbers of mutations accumulated in the two types of genomes. This result is consistent with beneficial mutations having a lower beneficial effect on mutant strains. Despite the overall fitness differences, some replicas of one mutant strain at passage 50 showed fitness increases similar to those observed for the wild type. We hypothesized that these evolved, high-fitness mutants may have a lower robustness than evolved, high-fitness controls. Robustness is the ability of a virus to avoid phenotypic changes in the face of mutation. We confirmed our hypothesis in mutation-accumulation experiments that showed a normalized fitness loss that was significantly larger in mutant bottlenecked populations than in control populations.
Journal of Molecular Microbiology and Biotechnology | 2011
Isabel S. Novella; John B. Presloid; Sarah D. Smith; Claus O. Wilke
During the past decade or so, there has been a substantial body of work to dissect arboviral evolution and to develop models of adaptation during host switching. Regardless of what species serve as host or vectors, and of the geographic distribution and the mechanisms of replication, arboviruses tend to have slow evolutionary rates in nature. The hypothesis that this is the result of replication in the disparate environments provided by host and vector did not receive solid experimental support in any of the many viral species tested. Instead, it seems that from the virus’s point of view, either the two environments are sufficiently similar or one of the environments so dominates viral evolution that there is tolerance for suboptimal adaptation to the other environment. Replication in alternating environments has an unexpected cost in that there is decreased genetic variance that translates into a compromised adaptability for bypassed environments. Arboviruses under strong and continuous positive selection may have unusual patterns of genomic changes, with few or no mutations accumulated in the consensus sequence or with dN/dS values typically consistent with random drift in DNA-based organisms.
Viruses | 2015
John B. Presloid; Isabel S. Novella
Due to high mutation rates, populations of RNA viruses exist as a collection of closely related mutants known as a quasispecies. A consequence of error-prone replication is the potential for rapid adaptation of RNA viruses when a selective pressure is applied, including host immune systems and antiviral drugs. RNA interference (RNAi) acts to inhibit protein synthesis by targeting specific mRNAs for degradation and this process has been developed to target RNA viruses, exhibiting their potential as a therapeutic against infections. However, viruses containing mutations conferring resistance to RNAi were isolated in nearly all cases, underlining the problems of rapid viral evolution. Thus, while promising, the use of RNAi in treating or preventing viral diseases remains fraught with the typical complications that result from high specificity of the target, as seen in other antiviral regimens.
Journal of Virology | 2013
Isabel S. Novella; John B. Presloid; Cameron Beech; Claus O. Wilke
ABSTRACT Quasispecies theory is a case of mutation-selection balance for evolution at high mutation rates, such as those observed in RNA viruses. One of the main predictions of this model is the selection for robustness, defined as the ability of an organism to remain phenotypically unchanged in the face of mutation. We have used a collection of vesicular stomatitis virus strains that had been evolving either under positive selection or under random drift. We had previously shown that the former increase in fitness while the latter have overall fitness decreases (I. S. Novella, J. B. Presloid, T. Zhou, S. D. Smith-Tsurkan, B. E. Ebendick-Corpus, R. N. Dutta, K. L. Lust, and C. O. Wilke, J. Virol. 84:4960–4968, 2010). Here, we determined the robustness of these strains and demonstrated that strains under positive selection not only increase in fitness but also increase in robustness. In contrast, strains under drift not only decreased in fitness but also decreased in robustness. There was a good overall correlation between fitness and robustness. We also tested whether there was a correlation between fitness and thermostability, and we observed that the correlation was imperfect, indicating that the fitness effects of mutations are exerted in part at a level other than changing the resistance of the protein to temperature.
Current Opinion in Virology | 2014
Isabel S. Novella; John B. Presloid; R. Travis Taylor
RNA viruses of plants and animals have polymerases that are error-prone and produce complex populations of related, but non-identical, genomes called quasispecies. While there are vast variations in mutation rates among these viruses, selection has optimized the exact error rate of each species to provide maximum speed of replication and amount of variation without losing the ability to replicate because of excessive mutation. High mutation rates result in the selection of populations increasingly robust, which means they are increasingly resistant to show phenotypic changes after mutation. It is possible to manipulate the mutation rate, either by the use of mutagens or by selection (or genetic manipulation) of fidelity mutants. These polymerases usually, but not always, perform as well as wild type (wt) during cell infection, but show major phenotypic changes during in vivo infection. Both high and low fidelity variants are attenuated when the wt virus is virulent in the host. Alternatively when wt infection is non-apparent, the variants show major restrictions to spread in the infected host. Manipulation of mutation rates may become a new strategy to develop attenuated vaccines for humans and animals.
PLOS ONE | 2017
Adaeze O. Izuogu; Kristin L. McNally; Stephen E. Harris; Brian H. Youseff; John B. Presloid; Christopher Burlak; Jason Munshi-South; Sonja M. Best; R. Travis Taylor
Tick-borne flaviviruses (TBFVs), including Powassan virus and tick-borne encephalitis virus cause encephalitis or hemorrhagic fevers in humans with case-fatality rates ranging from 1–30%. Despite severe disease in humans, TBFV infection of natural rodent hosts has little noticeable effect. Currently, the basis for resistance to disease is not known. We hypothesize that the coevolution of flaviviruses with their respective hosts has shaped the evolution of potent antiviral factors that suppress virus replication and protect the host from lethal infection. In the current study, we compared virus infection between reservoir host cells and related susceptible species. Infection of primary fibroblasts from the white-footed mouse (Peromyscus leucopus, a representative host) with a panel of vector-borne flaviviruses showed up to a 10,000-fold reduction in virus titer compared to control Mus musculus cells. Replication of vesicular stomatitis virus was equivalent in P. leucopus and M. musculus cells suggesting that restriction was flavivirus-specific. Step-wise comparison of the virus infection cycle revealed a significant block to viral RNA replication, but not virus entry, in P. leucopus cells. To understand the role of the type I interferon (IFN) response in virus restriction, we knocked down signal transducer and activator of transcription 1 (STAT1) or the type I IFN receptor (IFNAR1) by RNA interference. Loss of IFNAR1 or STAT1 significantly relieved the block in virus replication in P. leucopus cells. The major IFN antagonist encoded by TBFV, nonstructural protein 5, was functional in P. leucopus cells, thus ruling out ineffective viral antagonism of the host IFN response. Collectively, this work demonstrates that the IFN response of P. leucopus imparts a strong and virus-specific barrier to flavivirus replication. Future identification of the IFN-stimulated genes responsible for virus restriction specifically in P. leucopus will yield mechanistic insight into efficient control of virus replication and may inform the development of antiviral therapeutics.
Virology | 2016
John B. Presloid; Tasneem F. Mohammad; Adam S. Lauring; Isabel S. Novella
The theory of plastogenetic congruence posits that ultimately, the pressure to maintain function in the face of biomolecular destabilization produces robustness. As temperature goes up so does destabilization. Thus, genetic robustness, defined as phenotypic constancy despite mutation, should correlate with survival during thermal challenge. We tested this hypothesis using vesicular stomatitis virus (VSV). We produced two sets of evolved strains after selection for higher thermostability by either preincubation at 37°C or by incubation at 40°C during infection. These VSV populations became more thermostable and also more fit in the absence of thermal selection, demonstrating an absence of tradeoffs. Eleven out of 12 evolved populations had a fixed, nonsynonymous substitution in the nucleocapsid (N) open reading frame. There was a partial correlation between thermostability and mutational robustness that was observed when the former was measured at 42°C, but not at 37°C. These results are consistent with our earlier work and suggest that the relationship between robustness and thermostability is complex. Surprisingly, many of the thermostable strains also showed increased resistance to monoclonal antibody and polyclonal sera, including sera from natural hosts. These data suggest that evolved thermostability may lead to antigenic diversification and an increased ability to escape immune surveillance in febrile hosts, and potentially to an improved robustness. These relationships have important implications not only in terms of viral pathogenesis, but also for the development of vaccine vectors and oncolytic agents.
Journal of Molecular Biology | 2008
John B. Presloid; Bonnie E. Ebendick-Corpus; Selene Zárate; Isabel S. Novella
Archive | 2015
Isabel S. Novella; John B. Presloid; R. Travis Taylor
Archive | 2010
Isabel S. Novella; John B. Presloid; Tong Zhou; Sarah D. Smith-Tsurkan; Bonnie E. Ebendick-Corpus; Ranendra N. Dutta; Kim L. Lust; O Claus