Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John C. Doyle is active.

Publication


Featured researches published by John C. Doyle.


IEEE Transactions on Automatic Control | 1989

State-space solutions to standard H/sub 2/ and H/sub infinity / control problems

John C. Doyle; Keith Glover; Pramod P. Khargonekar; Bruce A. Francis

Simple state-space formulas are derived for all controllers solving the following standard H/sub infinity / problem: For a given number gamma >0, find all controllers such that the H/sub infinity / norm of the closed-loop transfer function is (strictly) less than gamma . It is known that a controller exists if and only if the unique stabilizing solutions to two algebraic Riccati equations are positive definite and the spectral radius of their product is less than gamma /sup 2/. Under these conditions, a parameterization of all controllers solving the problem is given as a linear fractional transformation (LFT) on a contractive, stable, free parameter. The state dimension of the coefficient matrix for the LFT, constructed using the two Riccati solutions, equals that of the plant and has a separation structure reminiscent of classical LQG (i.e. H/sub 2/) theory. This paper is intended to be of tutorial value, so a standard H/sub 2/ solution is developed in parallel. >


Bioinformatics | 2003

The systems biology markup language (SBML) : a medium for representation and exchange of biochemical network models

Michael Hucka; Andrew Finney; Herbert M. Sauro; Hamid Bolouri; John C. Doyle; Hiroaki Kitano; Adam P. Arkin; Benjamin J. Bornstein; Dennis Bray; Athel Cornish-Bowden; Autumn A. Cuellar; S. Dronov; E. D. Gilles; Martin Ginkel; Victoria Gor; Igor Goryanin; W. J. Hedley; T. C. Hodgman; J.-H.S. Hofmeyr; Peter Hunter; Nick Juty; J. L. Kasberger; A. Kremling; Ursula Kummer; N. Le Novere; Leslie M. Loew; D. Lucio; Pedro Mendes; E. Minch; Eric Mjolsness

MOTIVATION Molecular biotechnology now makes it possible to build elaborate systems models, but the systems biology community needs information standards if models are to be shared, evaluated and developed cooperatively. RESULTS We summarize the Systems Biology Markup Language (SBML) Level 1, a free, open, XML-based format for representing biochemical reaction networks. SBML is a software-independent language for describing models common to research in many areas of computational biology, including cell signaling pathways, metabolic pathways, gene regulation, and others. AVAILABILITY The specification of SBML Level 1 is freely available from http://www.sbml.org/


IEEE Transactions on Automatic Control | 1981

Multivariable feedback design: Concepts for a classical/modern synthesis

John C. Doyle; G Stein

This paper presents a practical design perspective on multivariable feedback control problems. It reviews the basic issue-feedback design in the face of uncertainties-and generalizes known single-input, single-output (SISO) statements and constraints of the design problem to multiinput, multioutput (MIMO) cases. Two major MIMO design approaches are then evaluated in the context of these results.


Automatica | 1993

The complex structured singular value

Andrew Packard; John C. Doyle

A tutorial introduction to the complex structured singular value (μ) is presented, with an emphasis on the mathematical aspects of μ. The μ-based methods discussed here have been useful for analysing the performance and robustness properties of linear feedback systems. Several tests for robust stability and performance with computable bounds for transfer functions and their state space realizations are compared, and a simple synthesis problem is studied. Uncertain systems are represented using Linear Fractional Transformations (LFTs) which naturally unify the frequency-domain and state space methods.


Science | 2009

Fire in the Earth system.

David M. J. S. Bowman; Jennifer K. Balch; Paulo Artaxo; William J. Bond; Jean M. Carlson; Mark A. Cochrane; Ruth S. DeFries; John C. Doyle; Sandy P. Harrison; Fay H. Johnston; Jon E. Keeley; Meg A. Krawchuk; Christian A. Kull; J. Brad Marston; Max A. Moritz; I. Colin Prentice; Christopher I. Roos; Andrew C. Scott; Thomas W. Swetnam; Guido R. van der Werf; Stephen J. Pyne

Burn, Baby, Burn Wildfires can have dramatic and devastating effects on landscapes and human structures and are important agents in environmental transformation. Their impacts on nonanthropocentric aspects of the environment, such as ecosystems, biodiversity, carbon reserves, and climate, are often overlooked. Bowman et al. (p. 481) review what is known and what is needed to develop a holistic understanding of the role of fire in the Earth system, particularly in view of the pervasive impact of fires and the likelihood that they will become increasingly difficult to control as climate changes. Fire is a worldwide phenomenon that appears in the geological record soon after the appearance of terrestrial plants. Fire influences global ecosystem patterns and processes, including vegetation distribution and structure, the carbon cycle, and climate. Although humans and fire have always coexisted, our capacity to manage fire remains imperfect and may become more difficult in the future as climate change alters fire regimes. This risk is difficult to assess, however, because fires are still poorly represented in global models. Here, we discuss some of the most important issues involved in developing a better understanding of the role of fire in the Earth system.


Systems & Control Letters | 1988

State-space formulae for all stabilizing controllers that satisfy and H ∞ norm bound and relations to risk sensitivity

Keith Glover; John C. Doyle

Abstract Given a linear system, all stabilizing controllers such that a specified closed-loop transfer function has H ∞ norm less than a given scalar, are parametrized. This characterization involves the solution to two algebraic Riccati equations, each with the same order as the system, and further gives gives feasible controllers also with this order. The relationship to the risk-sensitive LQG stochastic control problem is established, giving an equivalence between robust and stochastic control.


Proceedings of the IEEE | 2007

Layering as Optimization Decomposition: A Mathematical Theory of Network Architectures

Mung Chiang; Steven H. Low; A.R. Calderbank; John C. Doyle

Network protocols in layered architectures have historically been obtained on an ad hoc basis, and many of the recent cross-layer designs are also conducted through piecemeal approaches. Network protocol stacks may instead be holistically analyzed and systematically designed as distributed solutions to some global optimization problems. This paper presents a survey of the recent efforts towards a systematic understanding of layering as optimization decomposition, where the overall communication network is modeled by a generalized network utility maximization problem, each layer corresponds to a decomposed subproblem, and the interfaces among layers are quantified as functions of the optimization variables coordinating the subproblems. There can be many alternative decompositions, leading to a choice of different layering architectures. This paper surveys the current status of horizontal decomposition into distributed computation, and vertical decomposition into functional modules such as congestion control, routing, scheduling, random access, power control, and channel coding. Key messages and methods arising from many recent works are summarized, and open issues discussed. Through case studies, it is illustrated how layering as Optimization Decomposition provides a common language to think about modularization in the face of complex, networked interactions, a unifying, top-down approach to design protocol stacks, and a mathematical theory of network architectures


Cell | 2004

Robustness of cellular functions.

Jörg Stelling; Uwe Sauer; Zoltan Szallasi; Francis J. Doyle; John C. Doyle

Robustness, the ability to maintain performance in the face of perturbations and uncertainty, is a long-recognized key property of living systems. Owing to intimate links to cellular complexity, however, its molecular and cellular basis has only recently begun to be understood. Theoretical approaches to complex engineered systems can provide guidelines for investigating cellular robustness because biology and engineering employ a common set of basic mechanisms in different combinations. Robustness may be a key to understanding cellular complexity, elucidating design principles, and fostering closer interactions between experimentation and theory.


IEEE Transactions on Automatic Control | 1991

Robustness in the presence of mixed parametric uncertainty and unmodeled dynamics

Michael K.H. Fan; André L. Tits; John C. Doyle

Continuing the development of the structured singular value approach to robust control design, the authors investigate the problem of computing mu in the case of mixed real parametric and complex uncertainty. The problem is shown to be equivalent to a smooth constrained finite-dimensional optimization problem. In view of the fact that the functional to be maximized may have several local extrema, an upper bound on mu whose computation is numerically tractable is established; this leads to a sufficient condition of robust stability and performance. A historical perspective on the development of the mu theory is included. >


IEEE Control Systems Magazine | 2002

Internet congestion control

Steven H. Low; Fernando Paganini; John C. Doyle

This article reviews the current transmission control protocol (TCP) congestion control protocols and overviews recent advances that have brought analytical tools to this problem. We describe an optimization-based framework that provides an interpretation of various flow control mechanisms, in particular, the utility being optimized by the protocols equilibrium structure. We also look at the dynamics of TCP and employ linear models to exhibit stability limitations in the predominant TCP versions, despite certain built-in compensations for delay. Finally, we present a new protocol that overcomes these limitations and provides stability in a way that is scalable to arbitrary networks, link capacities, and delays.

Collaboration


Dive into the John C. Doyle's collaboration.

Top Co-Authors

Avatar

Steven H. Low

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Keith Glover

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar

Nikolai Matni

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Marie Csete

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter M. Young

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

Fernando Paganini

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Lun Li

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Michael Hucka

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Andrew Finney

California Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge