John C. Fry
Cardiff University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by John C. Fry.
Applied and Environmental Microbiology | 2006
Kevin E. Ashelford; Nadia A. Chuzhanova; John C. Fry; Antonia J. Jones; Andrew J. Weightman
ABSTRACT A new computer program, called Mallard, is presented for screening entire 16S rRNA gene libraries of up to 1,000 sequences for chimeras and other artifacts. Written in the Java computer language and capable of running on all major operating systems, the program provides a novel graphical approach for visualizing phylogenetic relationships among 16S rRNA gene sequences. To illustrate its use, we analyzed most of the large libraries of cloned bacterial 16S rRNA gene sequences submitted to the public repository during 2005. Defining a large library as one containing 100 or more sequences of 1,200 bases or greater, we screened 25 of the 28 libraries and found that all but three contained substantial anomalies. Overall, 543 anomalous sequences were found. The average anomaly content per clone library was 9.0%, 4% higher than that previously estimated for the public repository overall. In addition, 90.8% of anomalies had characteristic chimeric patterns, a rise of 25.4% over that found previously. One library alone was found to contain 54 chimeras, representing 45.8% of its content. These figures far exceed previous estimates of artifacts within public repositories and further highlight the urgent need for all researchers to adequately screen their libraries prior to submission. Mallard is freely available from our website at http://www.cardiff.ac.uk/biosi/research/biosoft/ .
Applied and Environmental Microbiology | 2003
Richard J. Ellis; Philip Morgan; Andrew J. Weightman; John C. Fry
ABSTRACT In recent years, culture-independent methods have been used in preference to traditional isolation techniques for microbial community analysis. However, it is questionable whether uncultured organisms from a given sample are important for determining the impact of anthropogenic stress on indigenous communities. To investigate this, soil samples were taken from a site with patchy metal contamination, and the bacterial community structure was assessed with a variety of approaches. There were small differences in microscopic epifluorescence bacterial counts. Denaturing gradient gel electrophoresis (DGGE) profiles of 16S rRNA gene fragments (16S-DGGE) amplified directly from soil samples were highly similar. A clone library generated from the most contaminated sample revealed a diverse bacterial community, which showed similarities to pristine soil communities from other studies. However, the proportion of bacteria from the soil samples that were culturable on standard plate-counting media varied between 0.08 and 2.2%, and these values correlated negatively with metal concentrations. The culturable communities from each sample were compared by 16S-DGGE of plate washes and by fatty acid profiling of individual isolates. Each approach indicated that there were considerable differences between the compositions of the culturable communities from each sample. DGGE bands from both culture-based and culture-independent approaches were sequenced and compared. These data indicated that metal contamination did not have a significant effect on the total genetic diversity present but affected physiological status, so that the number of bacteria capable of responding to laboratory culture and their taxonomic distribution were altered. Thus, it appears that plate counts may be a more appropriate method for determining the effect of heavy metals on soil bacteria than culture-independent approaches.
Nature | 2005
Ronald John Parkes; Gordon Webster; Barry Andrew Cragg; Andrew J. Weightman; Carole J. Newberry; Timothy G. Ferdelman; Jens Kallmeyer; Bo Barker Jørgensen; Ivano W. Aiello; John C. Fry
The sub-seafloor biosphere is the largest prokaryotic habitat on Earth but also a habitat with the lowest metabolic rates. Modelled activity rates are very low, indicating that most prokaryotes may be inactive or have extraordinarily slow metabolism. Here we present results from two Pacific Ocean sites, margin and open ocean, both of which have deep, subsurface stimulation of prokaryotic processes associated with geochemical and/or sedimentary interfaces. At 90 m depth in the margin site, stimulation was such that prokaryote numbers were higher (about 13-fold) and activity rates higher than or similar to near-surface values. Analysis of high-molecular-mass DNA confirmed the presence of viable prokaryotes and showed changes in biodiversity with depth that were coupled to geochemistry, including a marked community change at the 90-m interface. At the open ocean site, increases in numbers of prokaryotes at depth were more restricted but also corresponded to increased activity; however, this time they were associated with repeating layers of diatom-rich sediments (about 9 Myr old). These results show that deep sedimentary prokaryotes can have high activity, have changing diversity associated with interfaces and are active over geological timescales.
Methods in Microbiology | 1990
John C. Fry
Publisher Summary Direct techniques in microbial ecology are by definition observational, and because microorganisms are very small microscopy is used. This type of approach can be used either qualitatively or quantitatively. As most research relies heavily on quantitative data, only this aspect of direct methods is considered in this chapter. This chapter concentrates on the methods for bacteria, because methods for other microorganisms are different. Epifluorescence microscopy is used for estimating total counts, sizes, biomass, growth rates, and numbers of active bacteria able to grow, take up nutrients, and respire. It can even be combined with immunological approaches to count specific bacterial species. This chapter focuses on the epifluorescence approaches. Quantitative microscopic observation always demands that the organisms are distributed randomly within the sample. Samples from different habitats require different treatment.
Journal of Microbiological Methods | 2003
Gordon Webster; Carole J. Newberry; John C. Fry; Andrew J. Weightman
Investigations into the deep marine environment have demonstrated the presence of a significant microbial biomass buried deep within sediments on a global scale. It is now believed that this deep biosphere plays a major role in the global cycling of elements and contains a large reservoir of organic carbon. This paper reports the development of a DNA extraction protocol that addresses the particular problems faced in applying molecular ecological techniques to samples containing very low biomass. Sediment samples were collected from different geographical locations within the Pacific Ocean and include the Ocean Drilling Program (ODP) Leg 190, Nankai Trough Accretionary Prism. Seven DNA extraction protocols were tested and a commercially available DNA extraction kit with modifications was shown to produce higher yields of polymerase chain reaction (PCR)-amplifiable DNA than standard laboratory methods. Denaturing gradient gel electrophoresis (DGGE) analysis of 16S rRNA gene diversity revealed that template DNA from these extremely low biomass sediment samples was susceptible to PCR bias and random amplification. We propose that it is essential to screen 16S rRNA gene products for bacterial diversity by DGGE or other rapid fingerprinting methods, prior to their use in establishing a representative clone library of deep sub-seafloor bacteria. This represents a cautionary approach to analysis of microbial diversity in such sub-seafloor ecosystems.
Applied and Environmental Microbiology | 2003
Kevin E. Ashelford; Martin J. Day; John C. Fry
ABSTRACT Here we report the first direct counts of soil bacteriophage and show that substantial populations of these viruses exist in soil (grand mean = 1.5 × 107 g−1), at least 350-fold more than the highest numbers estimated from traditional viable plaque counts. Adding pure cultures of a Serratia phage to soil showed that the direct counting methods with electron microscopy developed here underestimated the added phage populations by at least eightfold. So, assuming natural phages were similarly underestimated, virus numbers in soil averaged 1.5 × 108 g−1, which is equivalent to 4% of the total population of bacteria. This high abundance was to some extent confirmed by hybridizing colonies grown on Serratia and Pseudomonas selective media with cocktails of phage infecting these bacteria. This showed that 8.9 and 3.9%, respectively, hybridized with colonies from the two media and confirmed the presence of phage DNA sequences in the cultivable fraction of the natural population. Thus, soil phage, like their aquatic counterparts, are likely to be important in controlling bacterial populations and mediating gene transfer in soil.
FEMS Microbiology Ecology | 2008
John C. Fry; R. John Parkes; Barry Andrew Cragg; Andrew J. Weightman; Gordon Webster
The deep subseafloor biosphere supports a diverse population of prokaryotes belonging to the Bacteria and Archaea. Most of the taxonomic groups identified by molecular methods contain mainly uncultured phylotypes. Despite this several cultured strains have been isolated from this habitat, but they probably do not represent the majority of the population. Evidence is starting to suggest that some of the activities measured, such as sulphate reduction and methanogenesis, reflected in geochemical profiles, are carried out by a small subset of the community detected by molecular methods. It is further possible that heterotrophy may be the most important mode of metabolism in subsurface sediments and heterotrophic microorganisms could dominate the uncultured prokaryotic population. Although, heterotrophy is limited by the increasing recalcitrance of organic matter with depth, this may be counteracted by thermal activation of buried organic matter providing additional substrates at depth.
International Journal of Systematic and Evolutionary Microbiology | 1997
S. J. Bale; K. Goodman; Paul A. Rochelle; Julian Roberto Marchesi; John C. Fry; Andrew J. Weightman; Ronald John Parkes
Several strains of a strictly anaerobic, vibrio-shaped or sigmoid, sulfate-reducing bacterium were isolated from deep marine sediments (depth, 80 and 500 m) obtained from the Japan Sea (Ocean Drilling Program Leg 128, site 798B). This bacterium was identified as a member of the genus Desulfovibrio on the basis of the presence of desulfoviridin and characteristic phospholipid fatty acids (iso 17:1 omega 7 and iso 15:0), the small number of growth substrates utilized (lactate, pyruvate, and hydrogen), and 16S rRNA gene sequence analysis data. Based on data for 16S rRNA sequences (1,369 bp), all of the Japan Sea strains were identical to each other and were most closely related to Desulfovibrio salexigens and less closely related to Desulfovibrio desulfuricans (levels of similarity, 91 and 89.6%, respectively). There were, however, considerable phenotypic differences (in temperatures, pressures, and salinities tolerated, growth substrates, and electron donors) between the Japan Sea isolates and the type strains of previously described desulfovibrios, as well as important differences among the Japan Sea isolates. The Japan Sea isolates were active (with sulfide production) over a wide temperature range (15 to 65 degrees C) and a wide sodium chloride concentration range (0.2 to 10%) (moderate halophile), and they were barophiles that were active at pressures up to about 40 MPa (400 atm). The optimum pressures for activity corresponded to the calculated pressures at the depths from which the organisms were isolated (for isolates obtained at depths of 80 and 500 m the optimum activities occurred at 10 and 15 MPa, respectively [100 and 150 atm, respectively]). This confirms that the organisms came from deep sediments and indicates that they are well-adapted for deep sediment conditions, which is consistent with other characteristics (utilization of hydrogen, fermentation, and utilization of ferric iron and organic sulfonates as electron acceptors). We propose that Japan Sea isolate 500-1 is the type strain of a new species, Desulfovibrio profundus.
Applied and Environmental Microbiology | 2002
Louise A. O'Sullivan; Andrew J. Weightman; John C. Fry
ABSTRACT River microbial communities play an important role in global nutrient cycles, and aggregated bacteria such as those in epilithic biofilms may be major contributors. In this study the bacterial diversity of River Taff epilithon in South Wales was investigated. A 16S ribosomal DNA (rDNA) clone library was constructed and analyzed by partial sequencing of 76 of 347 clones and hybridization with taxon-specific probes. The epilithon was found to be very diverse, with an estimated 59.6% of the bacterial populations not accounted for by these clones. Members of the Cytophaga-Flexibacter-Bacteroides division (CFBs) were most abundant in the library, representing 25% of clones, followed by members of the α subdivision of the division Proteobacteria (α-Proteobacteria), γ-Proteobacteria, gram-positive bacteria, Cyanobacteria, β-Proteobacteria, δ-Proteobacteria, and the Prosthecobacter group. This study concentrated on the epilithic CFB populations, and a new set of degenerate 16S rDNA probes was developed to enhance their detection, namely, CFB560, CFB562, and CFB376. The commonly used probe CF319a/b may frequently lead to the underestimation of CFB populations in environmental studies, because it does not fully detect members of the division. CFB560 had exact matches to 95.6% of CFBs listed in the Ribosomal Database Project (release 8.0) small-subunit phylogenetic trees, compared to 60% for CF319a/b. The CFB probes detected 66 of 347 epilithon TAF clones, and 60 of these were partially sequenced. They affiliated with the RDP-designated groups Cytophaga, Sphingobacterium, Lewinella, and Cytophaga aurantiaca. CFB560 and CF319a/b detected 94% (62 of 66) and 48.5% (32 of 66) of clones, respectively, and therefore CFB560 is recommended for future use. Probe design in this study illustrated that multiple degenerate positions can greatly increase target range without adversely effecting specificity or experimental performance.
Microbiology | 1987
Mark J. Bale; John C. Fry; Martin J. Day
A naturally occurring mercury-resistance, conjugative plasmid, designated pQM1, was isolated from a bacterial population on the surface of stones from a river using Pseudomonas aeruginosa as a recipient. This was a narrow-host-range plasmid [IncP-13; 165 MDa; Tra+, Hgr, fluorescein mercuric acetater, merbrominr, Phi(E79), UVr] confined to some Pseudomonas spp. It was used to demonstrate transfer between bacteria on stones in laboratory microcosm experiments and in situ. Transfer occurred (3.3 X 10(-1) to 6.8 X 10(-9) per recipient) at all the temperatures used (6-20 degrees C), although frequencies were lower in the cold. Nutrient status also affected transfer frequency, rich conditions promoting transfer. The presence of competing bacteria in the natural epilithon lowered transfer frequencies, but when unscrubbed stones were heat treated, transfer was enhanced, perhaps because of nutrient release from the heated epilithon.