John C. Lin
Pfizer
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by John C. Lin.
Nature Neuroscience | 2003
John C. Lin; Wei-Hsien Ho; Austin L. Gurney; Arnon Rosenthal
Netrin-G1 is a lipid-anchored protein that is structurally related to the netrin family of axon guidance molecules. Netrin-G1 does not bind any of the known netrin receptors and its function is not known. Here we identify human netrin-G1 ligand (NGL-1), a transmembrane protein containing leucine-rich repeat (LRR) and immunoglobulin (Ig) domains that specifically interacts with netrin-G1 through its LRR region. Whereas netrin-G1 is expressed highly in mouse thalamic axons, NGL-1 is most abundant in the striatum and the cerebral cortex—the intermediate and final targets, respectively, of thalamocortical axons (TCAs). Surface-bound NGL-1 stimulates, but soluble NGL-1 disrupts, the growth of embryonic thalamic axons, and in vitro data indicate that NGL-1 activity may be mediated at least partially by netrin-G1. Our findings provide evidence that netrin-G1 functions as an important component of the NGL-1 receptor to promote TCA outgrowth and that membrane-bound netrins can participate in receiving axonal signaling pathways.
Vision Research | 2008
Jindong Ding; John C. Lin; Brian E. Mace; Rolf Herrmann; Patrick M. Sullivan; Catherine Bowes Rickman
Age-related macular degeneration (AMD) is a late-onset, neurodegenerative retinal disease that shares several clinical and pathological features with Alzheimers disease (AD) including extracellular deposits containing amyloid-beta (Abeta) peptides. Immunotherapy targeting the Abeta protein has been investigated as a potential treatment for AD. Here, we present the rationale for extending this approach to treat AMD. We tested an anti-Abeta antibody administered systemically in a mouse model of AMD. Histological and functional measurements in treated animals compared to controls showed that following immunotherapy, the amounts of Abeta in the retina and brain were decreased and the ERG deficits in the retina were attenuated. These data support the hypothesis that Abeta is a therapeutic target for AMD.
Nature Biotechnology | 2015
Liang Xiao; Qiang Feng; Suisha Liang; Si Brask Sonne; Zhongkui Xia; Xinmin Qiu; Xiaoping Li; Hua Long; Jianfeng Zhang; Dongya Zhang; Chuan Liu; Zhiwei Fang; Joyce Chou; Jacob Glanville; Qin Hao; Dorota Ewa Kotowska; Camilla Colding; Tine Rask Licht; Donghai Wu; Jun Yu; Joseph Jao Yiu Sung; Qiaoyi Liang; Junhua Li; Huijue Jia; Zhou Lan; Valentina Tremaroli; Piotr Dworzynski; H. Bjørn Nielsen; Fredrik Bäckhed; Joël Doré
We established a catalog of the mouse gut metagenome comprising ∼2.6 million nonredundant genes by sequencing DNA from fecal samples of 184 mice. To secure high microbiome diversity, we used mouse strains of diverse genetic backgrounds, from different providers, kept in different housing laboratories and fed either a low-fat or high-fat diet. Similar to the human gut microbiome, >99% of the cataloged genes are bacterial. We identified 541 metagenomic species and defined a core set of 26 metagenomic species found in 95% of the mice. The mouse gut microbiome is functionally similar to its human counterpart, with 95.2% of its Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologous groups in common. However, only 4.0% of the mouse gut microbial genes were shared (95% identity, 90% coverage) with those of the human gut microbiome. This catalog provides a useful reference for future studies.
Cancer immunology research | 2015
Shihao Chen; Li-Fen Lee; Timothy S. Fisher; Bart Jessen; Mark William Elliott; Winston Evering; Kathryn Logronio; Guang Huan Tu; Konstantinos Tsaparikos; Xiaoai Li; Hui Wang; Chi Ying; Mengli Xiong; Todd VanArsdale; John C. Lin
Chen, Lee, and colleagues compared the antitumor activity of anti-PD-1 in combination with anti-4-1BB versus with anti-LAG-3 and showed in syngeneic, poorly immunogenic mouse tumor models that the combination with anti-4-1BB elicited superior and well-tolerated tumor inhibition that did not require vaccine. Immunotherapies targeting the programmed death 1 (PD-1) coinhibitory receptor have shown great promise for a subset of patients with cancer. However, robust and safe combination therapies are still needed to bring the benefit of cancer immunotherapy to broader patient populations. To search for an optimal strategy of combinatorial immunotherapy, we have compared the antitumor activity of the anti–4-1BB/anti–PD-1 combination with that of the anti–PD-1/anti–LAG-3 combination in the poorly immunogenic B16F10 melanoma model. Pronounced tumor inhibition occurred only in animals receiving anti–PD-1 and anti–4-1BB concomitantly, while combining anti–PD-1 with anti–LAG-3 led to a modest degree of tumor suppression. The activity of the anti–4-1BB/anti–PD-1 combination was dependent on IFNγ and CD8+ T cells. Both 4-1BB and PD-1 proteins were elevated on the surface of CD8+ T cells by anti–4-1BB/anti–PD-1 cotreatment. In the tumor microenvironment, an effective antitumor immune response was induced as indicated by the increased CD8+/Treg ratio and the enrichment of genes such as Cd3e, Cd8a, Ifng, and Eomes. In the spleen, the combination treatment shaped the immune system to an effector/memory phenotype and increased the overall activity of tumor-specific CD8+ CTLs, reflecting a long-lasting systemic antitumor response. Furthermore, combination treatment in C57BL/6 mice showed no additional safety signals, and only minimally increased severity of the known toxicity relative to 4-1BB agonist alone. Therefore, in the absence of any cancer vaccine, anti–4-1BB/anti–PD-1 combination therapy is sufficient to elicit a robust antitumor effector/memory T-cell response in an aggressive tumor model and is therefore a candidate for combination trials in patients. Cancer Immunol Res; 3(2); 149–60. ©2014 AACR.
Journal of Molecular Biology | 2012
Sherry L. La Porte; Sangeetha Subbarao Bollini; Thomas A. Lanz; Yasmina Noubia Abdiche; Alexander S. Rusnak; Wei-Hsien Ho; Dione Kobayashi; Ons Harrabi; Danielle Pappas; Erene W. Mina; Anthony J. Milici; Thomas T. Kawabe; Kelly R. Bales; John C. Lin; Jaume Pons
Alzheimers disease, the most common cause of dementia in the elderly and characterized by the deposition and accumulation of plaques, is composed in part of β-amyloid (Aβ) peptides, loss of neurons, and the accumulation of neurofibrillary tangles. Here, we describe ponezumab, a humanized monoclonal antibody, and show how it binds specifically to the carboxyl (C)-terminus of Aβ40. Ponezumab can label Aβ that is deposited in brain parenchyma found in sections from Alzheimers disease casualties and in transgenic mouse models that overexpress Aβ. Importantly, ponezumab does not label full-length, non-cleaved amyloid precursor protein on the cell surface. The C-terminal epitope of the soluble Aβ present in the circulation appears to be available for ponezumab binding because systemic administration of ponezumab greatly elevates plasma Aβ40 levels in a dose-dependent fashion after administration to a mouse model that overexpress human Aβ. Administration of ponezumab to transgenic mice also led to a dose-dependent reduction in hippocampal amyloid load. To further explore the nature of ponezumab binding to Aβ40, we determined the X-ray crystal structure of ponezumab in complex with Aβ40 and found that the Aβ40 carboxyl moiety makes extensive contacts with ponezumab. Furthermore, the structure-function analysis supported this critical requirement for carboxy group of AβV40 in the Aβ-ponezumab interaction. These findings provide novel structural insights into the in vivo conformation of the C-terminus of Aβ40 and the brain Aβ-lowering efficacy that we observed following administration of ponezumab in transgenic mouse models.
PLOS ONE | 2008
John C. Lin; David Tsao; Paul Barras; Raul A. Bastarrachea; Bob Boyd; Joyce Chou; Rodnie Rosete; Hua Long; Alison Jane Forgie; Yasmina Noubia Abdiche; Jeanette Dilley; Jennifer Stratton; Carlos Garcia; David L. Sloane; Anthony G. Comuzzie; Arnon Rosenthal
Loss of function mutations in the receptor tyrosine kinase TrkB pathway resulted in hyperphagia and morbid obesity in human and rodents. Conversely, peripheral or central stimulation of TrkB by its natural ligands BDNF or NT4 reduced body weight and food intake in mice, supporting the idea that TrkB is a key anorexigenic signal downstream of the melanocortin-4 receptor (Mc4r) system. Here we show that in non-human primates TrkB agonists were anorexigenic when applied centrally, but surprisingly orexigenic, leading to gain in appetite, body weight, fat deposits and serum leptin levels, when given peripherally. The orexigenic and pro-obesity effects of peripherally administered TrkB agonists appear to be dose dependent, not associated with fluid retention nor with evidence of receptor down regulation. Our findings revealed that TrkB signaling exerts dual control on energy homeostasis in the primates that could be targeted for the treatment of either wasting disorders or obesity.
Experimental Neurology | 2010
Zarife Sahenk; Gloria Galloway; Chris Edwards; Vinod Malik; Brian K. Kaspar; Amy Eagle; Brent Yetter; Alison Jane Forgie; David Tsao; John C. Lin
Neurotrophic factors have been considered as potential therapeutics for peripheral neuropathies. Previously, we showed that neurotrophin-3 (NT-3) promotes nerve regeneration in Trembler(J) (Tr(J)) mice and in sural nerves from patients with Charcot-Marie-Tooth 1A (CMT1A). The relatively short plasma half-life of NT-3 and other neurotrophins, however, pose a practical difficulty in their clinical application. Therapeutic agonist antibodies (AAb) targeting the neurotrophic receptors may circumvent this obstacle due to their high specificity and long half-life. Using morphological, electrophysiological studies and functional motor testing, we assessed the efficacy of monoclonal TrkC AAb and TrkB AAb in the Tr(J) mice. Treatments of these AAbs individually or in combination over 20 weeks increased compound muscle action potential (CMAP) amplitude, which correlated with improved grip strength, as compared to the PBS control group. Improvements in CMAP amplitude were most prominent with TrkC AAb treatment. In all treatment groups, distal to the crush site of the sciatic nerves exhibited a significantly greater number of myelinated fibers (MFs) indicating improved regenerative response to injury. In the contralateral intact sciatic nerves, the number of MFs as well as the myelin thickness was also increased significantly by the AAb treatments, suggesting that the hypomyelination/amyelination state of the peripheral nerves in Tr(J) improved. Therapeutic response to AAb combination was often, albeit not always, the most prominent, indicating a non-redundant effect of TrkB and TrkC AAbs. An early functional recovery and the correlative morphological changes of enhanced regeneration were seen with TrkC AAb treatment. These results provide evidence for potential therapeutic use of monoclonal agonist antibodies for neurotrophin receptors in CMT1A and other neuropathies.
Journal of Alzheimer's Disease | 2012
Gary Freeman; John C. Lin; Jaume Pons; Nancy Raha
Ponezumab (PF-04360365) is a novel humanized IgG2Δa monoclonal antibody that binds to amyloid-β (Aβ). It is designed to have reduced immune effector function compared to other passive immunotherapies for Alzheimers disease (AD). Toxicity was evaluated in cynomolgus monkeys treated intravenously with vehicle or 10, 30, or 100 mg/kg of ponezumab every 10th day for up to 39 weeks, and after a 12-week recovery phase. The Aβ peptide sequence of monkeys is identical to that of humans. No substantial difference in test article exposure between sexes was observed, and mean plasma Cmax and AUC0-n were approximately dose-proportional. Ponezumab was detectable approximately 9 weeks after cessation of dosing. All animals, except two males given 10 mg/kg, maintained exposure to test article. One of these males tested positive for anti-ponezumab antibodies. Ponezumab was detected in the cerebrospinal fluid (CSF) of animals given active treatment. The estimated CSF/plasma ponezumab concentration ratio was <0.008 after multiple doses. At the end of the dosing and recovery phases, plasma Aβ1-40 and Aβ1-x were increased in treated animals versus controls. No test article-related effects were seen after ophthalmogical, cardiovascular, physical examinations, and clinical and anatomic pathology evaluations. Plasma concentrations of ponezumab on day 261 at the no observed adverse effect level of 100 mg/kg were 22.4 and 5.3 times greater on a Cmax and AUC basis, respectively, than human exposures at the highest dose (10 mg/kg) in a single-dose Phase I trial. These data suggest an acceptable safety profile for ponezumab as an immunotherapy for AD.
Seminars in Cell & Developmental Biology | 2003
John C. Lin; Arnon Rosenthal
Dopaminergic (DA) neurons in the midbrain are critically involved in several neurological-psychiatric illnesses and are specifically lost in Parkinsons disease. The DA neurons are generated through the interactions of multiple extrinsic and intrinsic factors during the embryogenesis. The identities and mechanisms of actions of a subset of these factors have recently been elucidated. The same factors have also been successfully used to induce efficient differentiation of DA neurons in vitro from embryonic stem cells or neural progenitors. These advances have far reaching scientific and medical implications.
Toxicologic Pathology | 2014
Jonathan R. Heyen; Jennifer L. Rojko; Mark Evans; Thomas P. Brown; Walter F. Bobrowski; Allison Vitsky; Shana Dalton; Niraj K. Tripathi; Sangeetha Subbarao Bollini; Theodore R. Johnson; John C. Lin; Nasir K. Khan; Bora Han
Two 6-month repeat-dose toxicity studies in cynomolgus monkeys illustrated immune complex–mediated adverse findings in individual monkeys and identified parameters that potentially signal the onset of immune complex–mediated reactions following administration of RN6G, a monoclonal antibody (mAb). In the first study, 3 monkeys exhibited nondose-dependent severe clinical signs accompanied by decreased erythrocytes with increased reticulocytes, neutrophilia, monocytosis, thrombocytopenia, coagulopathy, decreased albumin, azotemia, and increased serum levels of activated complement products, prompting unscheduled euthanasia. Histologically, immunohistochemical localization of RN6G was associated with monkey immunoglobulin and complement components in glomeruli and other tissues, attributable to immune complex disease (ICD). All 3 animals also had anti-RN6G antibodies and decreased plasma levels of RN6G. Subsequently, an investigational study was designed and conducted with regulatory agency input to detect early onset of ICD and assess reversibility to support further clinical development. Dosing of individual animals ceased when biomarkers of ICD indicated adverse findings. Of the 12 monkeys, 1 developed anti-RN6G antibodies and decreased RN6G exposure that preceded elevations in complement products, interleukin-6, and coagulation parameters and decreases in albumin and fibrinogen. All findings in this monkey, except for antidrug antibody (ADA), reversed after cessation of dosing without progressing to adverse sequelae typically associated with ICD.