Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yasmina Noubia Abdiche is active.

Publication


Featured researches published by Yasmina Noubia Abdiche.


Chemistry & Biology | 2013

Location Matters: Site of Conjugation Modulates Stability and Pharmacokinetics of Antibody Drug Conjugates

Pavel Strop; Shu-Hui Liu; Magdalena Grazyna Dorywalska; Kathy Delaria; Russell Dushin; Thomas-Toan Tran; Wei-Hsien Ho; Santiago E. Farias; Meritxell Galindo Casas; Yasmina Noubia Abdiche; Dahui Zhou; Ramalakshmi Y. Chandrasekaran; Caroline Samain; Carole M. Loo; Andrea Rossi; Mathias Rickert; Stellanie Krimm; Teresa Wong; Sherman Michael Chin; Jessica Yu; Jeanette Dilley; Javier Chaparro-Riggers; Gary Frederick Filzen; Christopher J. O’Donnell; Fang Wang; Jeremy Myers; Jaume Pons; David L. Shelton; Arvind Rajpal

Antibody drug conjugates (ADCs) are a therapeutic class offering promise for cancer therapy. The attachment of cytotoxic drugs to antibodies can result in an effective therapy with better safety potential than nontargeted cytotoxics. To understand the role of conjugation site, we developed an enzymatic method for site-specific antibody drug conjugation using microbial transglutaminase. This allowed us to attach diverse compounds at multiple positions and investigate how the site influences stability, toxicity, and efficacy. We show that the conjugation site has significant impact on ADC stability and pharmacokinetics in a species-dependent manner. These differences can be directly attributed to the position of the linkage rather than the chemical instability, as was observed with a maleimide linkage. With this method, it is possible to produce homogeneous ADCs and tune their properties to maximize the therapeutic window.


Analytical Biochemistry | 2008

Determining kinetics and affinities of protein interactions using a parallel real-time label-free biosensor, the Octet

Yasmina Noubia Abdiche; Dan Stephen Malashock; Alanna Pinkerton; Jaume Pons

ForteBios Octet optical biosensor harnesses biolayer interferometry to detect and quantify molecular interactions using disposable fiber-optic biosensors that address samples from an open shaking microplate without any microfluidics. We recruited a monoclonal antibody against a panel of peptides to compare the Octet directly with Biacores well-established 3000 platform and Bio-Rads recently launched ProteOn XPR36 array system, which use surface plasmon resonance (SPR) to detect the binding of one analyte over four surfaces and six analytes over six surfaces, respectively. A sink method was used to prevent analyte from rebinding the ligand-coated Octet tips and enabled us to extract accurate kinetic rate constants, as judged by their close agreement with those determined by SPR. Although the Octet is not sensitive enough to detect the binding of small molecules directly, it can access their affinities indirectly via solution competition experiments. We conducted similar experiments on the SPR instruments to validate these measurements. The Octet is emerging as a versatile complement to other more sophisticated biosensors, and the ProteOn provides high-quality data near the sensitivity of Biacore but in a more multiplexed format. Our results provide a benchmark for assessing the performance of the above-mentioned sensors.


Protein Science | 2008

Probing the binding mechanism and affinity of tanezumab, a recombinant humanized anti-NGF monoclonal antibody, using a repertoire of biosensors

Yasmina Noubia Abdiche; Dan Stephen Malashock; Jaume Pons

We describe the use of four complementary biosensors (Biacore 3000, Octet QK, ProteOn XPR36, and KinExA 3000) in characterizing the kinetics of human nerve growth factor (NGF) binding to a humanized NGF‐neutralizing monoclonal antibody (tanezumab, formerly known as RN624). Tanezumab is a clinical candidate as a therapy for chronic pain. Our measurements were consistent with the NGF/tanezumab binding affinity being tighter than 10 pM due to the formation of an extremely stable complex that had an estimated half‐life exceeding 100 h, which was beyond the resolution of any of our methods. The system was particularly challenging to study because NGF is an obligate homodimer, and we describe various assay orientations and immobilization methods that were used to minimize avidity in our experiments while keeping NGF in as native a state as possible. We also explored the interactions of NGF with its natural receptors, TrkA and P75, and how tanezumab blocks them. The Biacore blocking assay that we designed was used to quantify the potency of tanezumab and is more precise and reproducible than the currently available cell‐based functional assays.


Journal of Molecular Biology | 2012

Generating Bispecific Human IgG1 and IgG2 Antibodies from Any Antibody Pair

Pavel Strop; Wei-Hsien Ho; Leila Marie Boustany; Yasmina Noubia Abdiche; Kevin Lindquist; Santiago E. Farias; Mathias Rickert; Charles Takeshi Appah; Edward Derrick Pascua; Teresa Radcliffe; Janette Sutton; Javier Chaparro-Riggers; Wei Chen; Meritxell Galindo Casas; Sherman Michael Chin; Oi Kwan Wong; Shu-Hui Liu; German J. Vergara; Dave Shelton; Arvind Rajpal; Jaume Pons

Bispecific antibodies and antibody fragments are a new class of therapeutics increasingly utilized in the clinic for T cell recruitment (catumaxomab anti-EpCAM/CD3 and blinatumomab anti-CD19/CD3), increase in the selectivity of targeting, or simultaneous modulation of multiple cellular pathways. While the clinical potential for certain bispecific antibody formats is clear, progress has been hindered because they are often difficult to manufacture, may suffer from suboptimal pharmacokinetic properties, and may be limited due to potential immunogenicity issues. Current state-of-the-art human IgG-like bispecific technologies require co-expression of two heavy chains with a single light chain, use crossover domains to segregate light chains, or utilize scFv (single-chain fragment variable)-Fc fusion. We have engineered both human IgG1 and IgG2 subtypes, with minimal point mutations, to form full-length bispecific human antibodies with high efficiency and in high purity. In our system, the two antibodies of interest can be expressed and purified separately, mixed together under appropriate redox conditions, resulting in a formation of a stable bispecific antibody with high yields. With this approach, it is not necessary to generate new antibodies that share a common light chain, therefore allowing the immediate use of an existing antibody regardless of whether it has been generated via standard hybridoma or display methods. We demonstrate the generality of the approach and show that these bispecific antibodies have properties similar to those of wild-type IgGs, and we further demonstrate the utility of the technology with an example of a CD3/CD20 bispecific antibody that effectively depletes B cells in vitro and in vivo.


Journal of Pharmacology and Experimental Therapeutics | 2012

Proprotein Convertase Substilisin/Kexin Type 9 Antagonism Reduces Low-Density Lipoprotein Cholesterol in Statin-Treated Hypercholesterolemic Nonhuman Primates

Hong Liang; Javier Chaparro-Riggers; Pavel Strop; Tao Geng; Janette Sutton; Daniel Tsai; Lanfang Bai; Yasmina Noubia Abdiche; Jeanette Dilley; Jessica Yu; Si Wu; Sherman M Chin; Nicole A Lee; Andrea Rossi; John C. Lin; Arvind Rajpal; Jaume Pons; David L. Shelton

Proprotein convertase substilisin/kexin type 9 (PCSK9) promotes the degradation of low-density lipoprotein (LDL) receptor (LDLR) and thereby increases serum LDL-cholesterol (LDL-C). We have developed a humanized monoclonal antibody that recognizes the LDLR binding domain of PCSK9. This antibody, J16, and its precursor mouse antibody, J10, potently inhibit PCSK9 binding to the LDLR extracellular domain and PCSK9-mediated down-regulation of LDLR in vitro. In vivo, J10 effectively reduces serum cholesterol in C57BL/6 mice fed normal chow. J16 reduces LDL-C in healthy and diet-induced hypercholesterolemic cynomologous monkeys, but does not significantly affect high-density lipoprotein-cholesterol. Furthermore, J16 greatly lowered LDL-C in hypercholesterolemic monkeys treated with the HMG-CoA reductase inhibitor simvastatin. Our data demonstrate that anti-PCSK9 antibody is a promising LDL-C-lowering agent that is both efficacious and potentially additive to current therapies.


Journal of Pharmacology and Experimental Therapeutics | 2010

The Application of Target Information and Preclinical Pharmacokinetic/Pharmacodynamic Modeling in Predicting Clinical Doses of a Dickkopf-1 Antibody for Osteoporosis

Alison Betts; Tracey Clark; Jianxin Yang; Judith L. Treadway; Mei Li; Michael A. Giovanelli; Yasmina Noubia Abdiche; Donna Marie Stone; Vishwas M. Paralkar

PF-04840082 is a humanized prototype anti-Dickkopf-1 (Dkk-1) immunoglobulin isotype G2 (IgG2) antibody for the treatment of osteoporosis. In vitro, PF-04840082 binds to human, monkey, rat, and mouse Dkk-1 with high affinity. After administration of PF-04840082 to rat and monkey, free Dkk-1 concentrations decreased rapidly and returned to baseline in a dose-dependent manner. In rat and monkey, PF-04840082 exhibited nonlinear pharmacokinetics (PK) and a target-mediated drug disposition (TMDD) model was used to characterize PF-04840082 versus Dkk-1 concentration response relationship. PK/pharmacodynamic (PK/PD) modeling enabled estimation of antibody non-target-mediated elimination, Dkk-1 turnover, complex formation, and complex elimination. The TMDD model was translated to human to predict efficacious dose and minimum anticipated biological effect level (MABEL) by incorporating information on typical IgG2 human PK, antibody-target association/dissociation rates, Dkk-1 expression, and turnover rates. The PK/PD approach to MABEL was compared with the standard “no adverse effect level” (NOAEL) approach to calculating clinical starting doses and a pharmacological equilibrium method. The NOAEL method gave estimates of dose that were too high to ensure safety of clinical trials. The pharmacological equilibrium approach calculated receptor occupancy (RO) based on equilibrium dissociation constant alone and did not take into account rate of turnover of the target or antibody–target complex kinetics and, as a result, it likely produced a substantial overprediction of RO at a given dose. It was concluded that the calculation of MABEL according to the TMDD model was the most appropriate means for ensuring safety and efficacy in clinical studies.


British Journal of Pharmacology | 2009

CGRP function-blocking antibodies inhibit neurogenic vasodilatation without affecting heart rate or arterial blood pressure in the rat

J Zeller; K T Poulsen; J E Sutton; Yasmina Noubia Abdiche; S Collier; R Chopra; C A Garcia; Jaume Pons; Arnon Rosenthal; D L Shelton

Calcitonin gene‐related peptide (CGRP) receptor antagonists effectively abort migraine headache and inhibit neurogenic vasodilatation in humans as well as rat models. Monoclonal antibodies typically have long half‐lives, and we investigated whether or not function‐blocking CGRP antibodies would inhibit neurogenic vasodilatation with a long duration of action and therefore be a possible approach to preventive therapy of migraine. During chronic treatment with anti‐CGRP antibodies, we measured cardiovascular function, which might be a safety concern of CGRP inhibition.


Journal of Molecular Biology | 2011

Synthetic Antibodies Designed on Natural Sequence Landscapes

Wenwu Zhai; Jacob Glanville; Markus Fuhrmann; Li Mei; Irene Ni; Purnima Sundar; Thomas Van Blarcom; Yasmina Noubia Abdiche; Kevin Lindquist; Ralf Strohner; Dilduz Telman; Guido Cappuccilli; William J. J. Finlay; Jan Van den Brulle; David R. Cox; Jaume Pons; Arvind Rajpal

We present a method for synthetic antibody library generation that combines the use of high-throughput immune repertoire analysis and a novel synthetic technology. The library design recapitulates positional amino acid frequencies observed in natural antibody repertoires. V-segment diversity in four heavy (V(H)) and two kappa (V(κ)) germlines was introduced based on the analysis of somatically hypermutated donor-derived repertoires. Complementarity-determining region 3 length and amino acid designs were based on aggregate frequencies of all V(H) and V(κ) sequences in the data set. The designed libraries were constructed through an adaptation of a novel gene synthesis technology that enables precise positional control of amino acid composition and incorporation frequencies. High-throughput pyrosequencing was used to monitor the fidelity of construction and characterize genetic diversity in the final 3.6×10(10) transformants. The library exhibited Fab expression superior to currently reported synthetic approaches of equivalent diversity, with greater than 93% of clones observed to successfully display both a correctly folded heavy chain and a correctly folded light chain. Genetic diversity in the library was high, with 95% of 7.0×10(5) clones sequenced observed only once. The obtained library diversity explores a comparable sequence space as the donor-derived natural repertoire and, at the same time, is able to access novel recombined diversity due to lack of segmental linkage. The successful isolation of low- and subnanomolar-affinity antibodies against a diverse panel of receptors, growth factors, enzymes, antigens from infectious reagents, and peptides confirms the functional viability of the design strategy.


Journal of Molecular Biology | 2012

Structural basis of C-terminal β-amyloid peptide binding by the antibody ponezumab for the treatment of Alzheimer's disease.

Sherry L. La Porte; Sangeetha Subbarao Bollini; Thomas A. Lanz; Yasmina Noubia Abdiche; Alexander S. Rusnak; Wei-Hsien Ho; Dione Kobayashi; Ons Harrabi; Danielle Pappas; Erene W. Mina; Anthony J. Milici; Thomas T. Kawabe; Kelly R. Bales; John C. Lin; Jaume Pons

Alzheimers disease, the most common cause of dementia in the elderly and characterized by the deposition and accumulation of plaques, is composed in part of β-amyloid (Aβ) peptides, loss of neurons, and the accumulation of neurofibrillary tangles. Here, we describe ponezumab, a humanized monoclonal antibody, and show how it binds specifically to the carboxyl (C)-terminus of Aβ40. Ponezumab can label Aβ that is deposited in brain parenchyma found in sections from Alzheimers disease casualties and in transgenic mouse models that overexpress Aβ. Importantly, ponezumab does not label full-length, non-cleaved amyloid precursor protein on the cell surface. The C-terminal epitope of the soluble Aβ present in the circulation appears to be available for ponezumab binding because systemic administration of ponezumab greatly elevates plasma Aβ40 levels in a dose-dependent fashion after administration to a mouse model that overexpress human Aβ. Administration of ponezumab to transgenic mice also led to a dose-dependent reduction in hippocampal amyloid load. To further explore the nature of ponezumab binding to Aβ40, we determined the X-ray crystal structure of ponezumab in complex with Aβ40 and found that the Aβ40 carboxyl moiety makes extensive contacts with ponezumab. Furthermore, the structure-function analysis supported this critical requirement for carboxy group of AβV40 in the Aβ-ponezumab interaction. These findings provide novel structural insights into the in vivo conformation of the C-terminus of Aβ40 and the brain Aβ-lowering efficacy that we observed following administration of ponezumab in transgenic mouse models.


mAbs | 2015

The neonatal Fc receptor (FcRn) binds independently to both sites of the IgG homodimer with identical affinity.

Yasmina Noubia Abdiche; Yik Andy Yeung; Javier Chaparro-Riggers; Ishita Barman; Pavel Strop; Sherman Michael Chin; Amber Pham; Gary Louis Bolton; Dan McDonough; Kevin Lindquist; Jaume Pons; Arvind Rajpal

The neonatal Fc receptor (FcRn) is expressed by cells of epithelial, endothelial and myeloid lineages and performs multiple roles in adaptive immunity. Characterizing the FcRn/IgG interaction is fundamental to designing therapeutic antibodies because IgGs with moderately increased binding affinities for FcRn exhibit superior serum half-lives and efficacy. It has been hypothesized that 2 FcRn molecules bind an IgG homodimer with disparate affinities, yet their affinity constants are inconsistent across the literature. Using surface plasmon resonance biosensor assays that eliminated confounding experimental artifacts, we present data supporting an alternate hypothesis: 2 FcRn molecules saturate an IgG homodimer with identical affinities at independent sites, consistent with the symmetrical arrangement of the FcRn/Fc complex observed in the crystal structure published by Burmeister et al. in 1994. We find that human FcRn binds human IgG1 with an equilibrium dissociation constant (KD) of 760 ± 60 nM (N = 14) at 25°C and pH 5.8, and shows less than 25% variation across the other human subtypes. Human IgG1 binds cynomolgus monkey FcRn with a 2-fold higher affinity than human FcRn, and binds both mouse and rat FcRn with a 10-fold higher affinity than human FcRn. FcRn/IgG interactions from multiple species show less than a 2-fold weaker affinity at 37°C than at 25°C and appear independent of an IgGs variable region. Our in vivo data in mouse and rat models demonstrate that both affinity and avidity influence an IgGs serum half-life, which should be considered when choosing animals, especially transgenic systems, as surrogates.

Collaboration


Dive into the Yasmina Noubia Abdiche's collaboration.

Top Co-Authors

Avatar

Jaume Pons

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Jaume Pons

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Arvind Rajpal

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pavel Strop

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Hong Liang

California Institute for Quantitative Biosciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge