Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John C. Middlebrooks is active.

Publication


Featured researches published by John C. Middlebrooks.


PLOS Biology | 2005

Location coding by opponent neural populations in the auditory cortex.

G. Christopher Stecker; Ian A. Harrington; John C. Middlebrooks

Although the auditory cortex plays a necessary role in sound localization, physiological investigations in the cortex reveal inhomogeneous sampling of auditory space that is difficult to reconcile with localization behavior under the assumption of local spatial coding. Most neurons respond maximally to sounds located far to the left or right side, with few neurons tuned to the frontal midline. Paradoxically, psychophysical studies show optimal spatial acuity across the frontal midline. In this paper, we revisit the problem of inhomogeneous spatial sampling in three fields of cat auditory cortex. In each field, we confirm that neural responses tend to be greatest for lateral positions, but show the greatest modulation for near-midline source locations. Moreover, identification of source locations based on cortical responses shows sharp discrimination of left from right but relatively inaccurate discrimination of locations within each half of space. Motivated by these findings, we explore an opponent-process theory in which sound-source locations are represented by differences in the activity of two broadly tuned channels formed by contra- and ipsilaterally preferring neurons. Finally, we demonstrate a simple model, based on spike-count differences across cortical populations, that provides bias-free, level-invariant localization—and thus also a solution to the “binding problem” of associating spatial information with other nonspatial attributes of sounds.


Journal of the Acoustical Society of America | 1990

Directional dependence of interaural envelope delays

John C. Middlebrooks; David M. Green

Interaural envelope delays were measured in six human subjects as a function of the location of a movable sound source, bandpassed between 3 and 16 kHz. A total of 324 source locations were tested in horizontal and vertical increments of 10 degrees. A method is described for estimating the complex directional transfer function of the external ear, independent of the position of the recording microphone in the ear canal. To compute interaural envelope delays, directional transfer functions from the left and right ears were convolved with a critical-band filter, the envelopes were computed, and the envelopes were cross correlated. Interaural envelope delays, as well as interaural group delays, varied somewhat with the center frequency of the critical-band filter and with the vertical location of the sound source. Nevertheless, to a first approximation, envelope delays measured in the ear canals increased monotonically with increasing angle of incidence relative to the median plane, as they would for two microphones on the surface of a rigid sphere. The results are discussed in relation to the possible contribution of interaural envelope delays to sound localization behavior.


Jaro-journal of The Association for Research in Otolaryngology | 2004

Topographic Spread of Inferior Colliculus Activation in Response to Acoustic and Intracochlear Electric Stimulation

Russell L. Snyder; Julie Arenberg Bierer; John C. Middlebrooks

The design of contemporary multichannel cochlear implants is predicated on the presumption that they activate multiple independent sectors of the auditory nerve array. The independence of these channels, however, is limited by the spread of activation from each intracochlear electrode across the auditory nerve array. In this study, we evaluated factors that influence intracochlear spread of activation using two types of intracochlear electrodes: (1) a clinical-type device consisting of a linear series of ring contacts positioned along a silicon elastomer carrier, and (2) a pair of visually placed (VP) ball electrodes that could be positioned independently relative to particular intracochlear structures, e.g., the spiral ganglion. Activation spread was estimated by recording multineuronal evoked activity along the cochleotopic axis of the central nucleus of the inferior colliculus (ICC). This activity was recorded using silicon-based single-shank, 16-site recording probes, which were fixed within the ICC at a depth defined by responses to acoustic tones. After deafening, electric stimuli consisting of single biphasic electric pulses were presented with each electrode type in various stimulation configurations (monopolar, bipolar, tripolar) and/or various electrode orientations (radial, off-radial, longitudinal). The results indicate that monopolar (MP) stimulation with either electrode type produced widepread excitation across the ICC. Bipolar (BP) stimulation with banded pairs of electrodes oriented longitudinally produced activation that was somewhat less broad than MP stimulation, and tripolar (TP) stimulation produced activation that was more restricted than MP or BP stimulation. Bipolar stimulation with radially oriented pairs of VP ball electrodes produced the most restricted activation. The activity patterns evoked by radial VP balls were comparable to those produced by pure tones in normal-hearing animals. Variations in distance between radially oriented VP balls had little effect on activation spread, although increases in interelectrode spacing tended to reduce thresholds. Bipolar stimulation with longitudinally oriented VP electrodes produced broad activation that tended to broaden as the separation between electrodes increased.


Journal of the Acoustical Society of America | 1992

Characterization of external ear impulse responses using Golay codes

Bin Zhou; David M. Green; John C. Middlebrooks

This report explains the use of a complementary series, Golay codes, for probing the impulse response of the external ear. The codes are used to measure both the resonance of the human ear canal, using a sealed sound-delivery system, and to measure the transfer function of the pinna, using a free-field source. With two series of 512 binary numbers, the improvement in signal-to-noise ratio over a single impulse approaches the theoretical value of 30.1 dB [10 log(2.512)]. This technique has many of the same properties as maximal-length sequences [M. R. Schroeder, J. Acoust. Soc. Am. 66, 497-500 (1979)], but it has the added advantage that the sequence length is an integer power of two and is, therefore, particularly convenient to use with modern Fourier transform techniques.


Nature Neuroscience | 2011

Auditory cortex spatial sensitivity sharpens during task performance

Chen-Chung Lee; John C. Middlebrooks

Activity in the primary auditory cortex (A1) is essential for normal sound localization behavior, but previous studies of the spatial sensitivity of neurons in A1 have found broad spatial tuning. We tested the hypothesis that spatial tuning sharpens when an animal engages in an auditory task. Cats performed a task that required evaluation of the locations of sounds and one that required active listening, but in which sound location was irrelevant. Some 26–44% of the units recorded in A1 showed substantially sharpened spatial tuning during the behavioral tasks as compared with idle conditions, with the greatest sharpening occurring during the location-relevant task. Spatial sharpening occurred on a scale of tens of seconds and could be replicated multiple times in ∼1.5-h test sessions. Sharpening resulted primarily from increased suppression of responses to sounds at least-preferred locations. That and an observed increase in latencies suggest an important role of inhibitory mechanisms.


Jaro-journal of The Association for Research in Otolaryngology | 2007

Auditory Prosthesis with a Penetrating Nerve Array

John C. Middlebrooks; Russell L. Snyder

Contemporary auditory prostheses (“cochlear implants”) employ arrays of stimulating electrodes implanted in the scala tympani of the cochlea. Such arrays have been implanted in some 100,000 profoundly or severely deaf people worldwide and arguably are the most successful of present-day neural prostheses. Nevertheless, most implant users show poor understanding of speech in noisy backgrounds, poor pitch recognition, and poor spatial hearing, even when using bilateral implants. Many of these limitations can be attributed to the remote location of stimulating electrodes relative to excitable cochlear neural elements. That is, a scala tympani electrode array lies within a bony compartment filled with electrically conductive fluid. Moreover, scala tympani arrays typically do not extend to the apical turn of the cochlea in which low frequencies are represented. In the present study, we have tested in an animal model an alternative to the conventional cochlear implant: a multielectrode array implanted directly into the auditory nerve. We monitored the specificity of stimulation of the auditory pathway by recording extracellular unit activity at 32 sites along the tonotopic axis of the inferior colliculus. The results demonstrate the activation of specific auditory nerve populations throughout essentially the entire frequency range that is represented by characteristic frequencies in the inferior colliculus. Compared to conventional scala tympani stimulation, thresholds for neural excitation are as much as 50-fold lower and interference between electrodes stimulated simultaneously is markedly reduced. The results suggest that if an intraneural stimulating array were incorporated into an auditory prosthesis system for humans, it could offer substantial improvement in hearing replacement compared to contemporary cochlear implants.


Biological Cybernetics | 2003

Distributed coding of sound locations in the auditory cortex

G. Christopher Stecker; John C. Middlebrooks

Abstract.Although the auditory cortex plays an important role in sound localization, that role is not well understood. In this paper, we examine the nature of spatial representation within the auditory cortex, focusing on three questions. First, are sound-source locations encoded by individual sharply tuned neurons or by activity distributed across larger neuronal populations? Second, do temporal features of neural responses carry information about sound-source location? Third, are any fields of the auditory cortex specialized for spatial processing? We present a brief review of recent work relevant to these questions along with the results of our investigations of spatial sensitivity in cat auditory cortex. Together, they strongly suggest that space is represented in a distributed manner, that response timing (notably first-spike latency) is a critical information-bearing feature of cortical responses, and that neurons in various cortical fields differ in both their degree of spatial sensitivity and their manner of spatial coding. The posterior auditory field (PAF), in particular, is well suited for the distributed coding of space and encodes sound-source locations partly by modulations of response latency. Studies of neurons recorded simultaneously from PAF and/or A1 reveal that spatial information can be decoded from the relative spike times of pairs of neurons – particularly when responses are compared between the two fields – thus partially compensating for the absence of an absolute reference to stimulus onset.


Journal of the Acoustical Society of America | 2004

Effects of cochlear-implant pulse rate and inter-channel timing on channel interactions and thresholds

John C. Middlebrooks

Interactions among the multiple channels of a cochlear prosthesis limit the number of channels of information that can be transmitted to the brain. This study explored the influence on channel interactions of electrical pulse rates and temporal offsets between channels. Anesthetized guinea pigs were implanted with 2-channel scala-tympani electrode arrays, and spike activity was recorded from the auditory cortex. Channel interactions were quantified as the reduction of the threshold for pulse-train stimulation of the apical channel by sub-threshold stimulation of the basal channel. Pulse rates were 254 or 4069 pulses per second (pps) per channel. Maximum threshold reductions averaged 9.6 dB when channels were stimulated simultaneously. Among nonsimultaneous conditions, threshold reductions at the 254-pps rate were entirely eliminated by a 1966-micros inter-channel offset. When offsets were only 41 to 123 micros, however, maximum threshold shifts averaged 3.1 dB, which was comparable to the dynamic ranges of cortical neurons in this experimental preparation. Threshold reductions at 4069 pps averaged up to 1.3 dB greater than at 254 pps, which raises some concern in regard to high-pulse-rate speech processors. Thresholds for various paired-pulse stimuli, pulse rates, and pulse-train durations were measured to test possible mechanisms of temporal integration.


The Journal of Neuroscience | 2010

Selective Electrical Stimulation of the Auditory Nerve Activates a Pathway Specialized for High Temporal Acuity

John C. Middlebrooks; Russell L. Snyder

Deaf people who use cochlear implants show surprisingly poor sensitivity to the temporal fine structure of sounds. One possible reason is that conventional cochlear implants cannot activate selectively the auditory-nerve fibers having low characteristic frequencies (CFs), which, in normal hearing, phase lock to stimulus fine structure. Recently, we tested in animals an alternative mode of auditory prosthesis using penetrating auditory-nerve electrodes that permit frequency-specific excitation in all frequency regions. We present here measures of temporal transmission through the auditory brainstem, from pulse trains presented with various auditory-nerve electrodes to phase-locked activity of neurons in the central nucleus of the inferior colliculus (ICC). On average, intraneural stimulation resulted in significant ICC phase locking at higher pulse rates (i.e., higher “limiting rates”) than did cochlear-implant stimulation. That could be attributed, however, to the larger percentage of low-CF neurons activated selectively by intraneural stimulation. Most ICC neurons with limiting rates >500 pulses per second had CFs <1.5 kHz, whereas neurons with lower limiting rates tended to have higher CFs. High limiting rates also correlated strongly with short first-spike latencies. It follows that short latencies correlated significantly with low CFs, opposite to the correlation observed with acoustical stimulation. These electrical-stimulation results reveal a high-temporal-acuity brainstem pathway characterized by low CFs, short latencies, and high-fidelity transmission of periodic stimulation. Frequency-specific stimulation of that pathway by intraneural stimulation might improve temporal acuity in human users of a future auditory prosthesis, which in turn might improve musical pitch perception and speech reception in noise.


Journal of the Acoustical Society of America | 2000

Localization of brief sounds: Effects of level and background noise

Ewan A. Macpherson; John C. Middlebrooks

Listeners show systematic errors in vertical-plane localization of wide-band sounds when tested with brief-duration stimuli at high intensities, but long-duration sounds at any comfortable level do not produce such errors. Improvements in high-level sound localization associated with increased stimulus duration might result from temporal integration or from adaptation that might allow reliable processing of later portions of the stimulus. Free-field localization judgments were obtained for clicks and for 3- and 100-ms noise bursts presented at sensation levels from 30 to 55 dB. For the brief (clicks and 3-ms) stimuli, listeners showed compression of elevation judgments and increased rates and unusual patterns of front/back confusion at sensation levels higher than 40-45 dB. At lower sensation levels, brief sounds were localized accurately. The localization task was repeated using 3-ms noise burst targets in a background of spatially diffuse, wide-band noise intended to pre-adapt the system prior to the target onset. For high-level targets, the addition of background noise afforded mild release from the elevation compression effect. Finally, a train of identical, high-level, 3-ms bursts was found to be localized more accurately than a single burst. These results support the adaptation hypothesis.

Collaboration


Dive into the John C. Middlebrooks's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Bremen

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. Christopher Stecker

Kresge Hearing Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge