Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John C. Saari is active.

Publication


Featured researches published by John C. Saari.


Neuron | 2001

Visual Cycle Impairment in Cellular Retinaldehyde Binding Protein (CRALBP) Knockout Mice Results in Delayed Dark Adaptation

John C. Saari; Maria Nawrot; Breandán N. Kennedy; Gregory G. Garwin; James B. Hurley; Jing Huang; Daniel E. Possin; John W. Crabb

Mutations in the human CRALBP gene cause retinal pathology and delayed dark adaptation. Biochemical studies have not identified the primary physiological function of CRALBP. To resolve this, we generated and characterized mice with a non-functional CRALBP gene (Rlbp1(-/-) mice). The photosensitivity of Rlbp1(-/-) mice is normal but rhodopsin regeneration, 11-cis-retinal production, and dark adaptation after illumination are delayed by >10-fold. All-trans-retinyl esters accumulate during the delay indicating that isomerization of all-trans- to 11-cis-retinol is impaired. No evidence of photoreceptor degeneration was observed in animals raised in cyclic light/dark conditions for up to 1 year. Albino Rlbp(-/-) mice are protected from light damage relative to the wild type. These findings support a role for CRALBP as an acceptor of 11-cis-retinol in the isomerization reaction of the visual cycle.


Neuron | 2001

Multiple phosphorylation of rhodopsin and the in vivo chemistry underlying rod photoreceptor dark adaptation

Matthew J. Kennedy; Kimberly A. Lee; Gregory A. Niemi; Kimberley B. Craven; Gregory G. Garwin; John C. Saari; James B. Hurley

Dark adaptation requires timely deactivation of phototransduction and efficient regeneration of visual pigment. No previous study has directly compared the kinetics of dark adaptation with rates of the various chemical reactions that influence it. To accomplish this, we developed a novel rapid-quench/mass spectrometry-based method to establish the initial kinetics and site specificity of light-stimulated rhodopsin phosphorylation in mouse retinas. We also measured phosphorylation and dephosphorylation, regeneration of rhodopsin, and reduction of all-trans retinal all under identical in vivo conditions. Dark adaptation was monitored by electroretinography. We found that rhodopsin is multiply phosphorylated and then dephosphorylated in an ordered fashion following exposure to light. Initially during dark adaptation, transduction activity wanes as multiple phosphates accumulate. Thereafter, full recovery of photosensitivity coincides with regeneration and dephosphorylation of rhodopsin.


Journal of Biological Chemistry | 1999

Preferential release of 11-cis-retinol from retinal pigment epithelial cells in the presence of cellular retinaldehyde-binding protein.

Hartmut Stecher; Michael H. Gelb; John C. Saari; Krzysztof Palczewski

In photoreceptor cells of the retina, photoisomerization of 11-cis-retinal to all-trans-retinal triggers phototransduction. Regeneration of 11-cis-retinal proceeds via a complex set of reactions in photoreceptors and in adjacent retinal pigment epithelial cells where all-trans-retinol is isomerized to 11-cis-retinol. Our results show that isomerizationin vitro only occurs in the presence of apo-cellular retinaldehyde-binding protein. This retinoid-binding protein may drive the reaction by mass action, overcoming the thermodynamically unfavorable isomerization. Furthermore, this 11-cis-retinol/11-cis-retinal-specific binding protein potently stimulates hydrolysis of endogenous 11-cis-retinyl esters but has no effect on hydrolysis of all-trans-retinyl esters. Apo-cellular retinaldehyde-binding protein probably exerts its effect by trapping the 11-cis-retinol product. When retinoid-depleted retinal pigment epithelial microsomes were preincubated with different amounts of all-trans-retinol to form all-trans-retinyl esters and then [3H]all-trans-retinol was added, as predicted, the specific radioactivity of [3H]all-trans-retinyl esters increased during subsequent reaction. However, the specific radioactivity of newly formed 11-cis-retinol stayed constant during the course of the reaction, and it was largely unaffected by expansion of the all-trans-retinyl ester pool during the preincubation. The absence of dilution establishes that most of the ester pool does not participate in isomerization, which in turn suggests that a retinoid intermediate other than all-trans-retinyl ester is on the isomerization reaction pathway.


Vision Research | 1998

Reduction of all-trans-retinal limits regeneration of visual pigment in mice

John C. Saari; Gregory G. Garwin; J. Preston Van Hooser; Krzysztof Palczewski

Absorption of photons by pigments in photoreceptor cells results in photoisomerization of the chromophore, 11-cis-retinal, to all-trans-retinal and activation of opsin. Photolysed chromophore is converted back to the 11-cis-configuration via several enzymatic steps in photoreceptor and retinal pigment epithelial cells. We investigated the levels of retinoids in mouse retina during constant illumination and regeneration in the dark as a means of obtaining more information about the rate-limiting step of the visual cycle and about cycle intermediates that could be responsible for desensitization of the visual system. All-trans-retinal accumulated in the retinas during constant illumination and following flash illumination. Decay of all-trans-retinal in the dark following constant illumination occurred without substantial accumulation of all-trans-retinal, generated by constant approximately equal to visual pigment regeneration (t1/2 approximately 5 and t1/2 approximately 7 min, respectively). All-trans-retinal, generated by constant illumination, decayed approximately 3 times more rapidly than that generated by a flash and, as shown previously, the rate of rhodopsin regeneration following a flash was approximately 4 times slower than after constant illumination. The retinyl ester pool (> 95% all-trans-retinyl ester) did not show a statistically significant change in size or composition during illumination. In addition, constant illumination increased the amount of photoreceptor membrane-associated arrestin. The results suggest that the rate-limiting step of the visual cycle is the reduction of all-trans-retinal to all-trans-retinol by all-trans-retinol dehydrogenase. The accumulation of all-trans-retinal during illumination may be responsible, in part, for the reduction in sensitivity of the visual system that accompanies photobleaching and may contribute to the development of retinal pathology associated with light damage and aging.


Annual Review of Nutrition | 2012

Vitamin A Metabolism in Rod and Cone Visual Cycles

John C. Saari

The chromophore of all known visual pigments consists of 11-cis-retinal (derived from either vitamin A1 or A2) or a hydroxylated derivative, bound to a protein (opsin) via a Schiff base. Absorption of a photon results in photoisomerization of the chromophore to all-trans-retinal and conversion of the visual pigment to the signaling form. Regeneration of the 11-cis-retinal occurs in an adjacent tissue and involves several enzymes, several water-soluble retinoid-binding proteins, and intra- and intercellular diffusional processes. Rod photoreceptor cells depend completely on the output of 11-cis-retinal from adjacent retinal pigment epithelial (RPE) cells. Cone photoreceptors cells can use 11-cis-retinal from the RPE and from a second more poorly characterized cycle, which appears to involve adjacent Müller (glial) cells. Recent progress in the characterization of rod and cone visual cycle components and reactions will result in the development of approaches to the amelioration of blinding eye diseases associated with visual cycle defects.


Journal of Biological Chemistry | 1996

Mechanisms of Opsin Activation

Janina Buczyłko; John C. Saari; Rosalie K. Crouch; Krzysztof Palczewski

Rhodopsin is constrained in an inactive conformation by interactions with 11-cis-retinal including formation of a protonated Schiff base with Lys296. Upon photoisomerization, major structural rearrangements that involve protonation of the active site Glu113 and cytoplasmic acidic residues, including Glu134, lead to the formation of the active form of the receptor, metarhodopsin II b, which decays to opsin. However, an activated receptor may be generated without illumination by addition of all-trans-retinal or its analogues to opsin, as measured in this study by the increased phosphorylation of opsin by rhodopsin kinase. The potency of stimulation depended on the chemical and isomeric nature of the analogues and the length of the polyene chain with all-trans-C17 aldehyde and all-trans-retinal being the most active and trans-C12 aldehyde being the least active. Certain cis-isomers, 11-cis-13-demethyl-retinal and 9-cis-C17 aldehyde, were also active. Most of the retinal analogues tested did not regenerate a spectrally identifiable pigment, and many were incapable of Schiff base formation (ketone, stable oximes, and Schiff base-derivatives of retinal). Thus, receptor activation resulted from formation of non-covalent complexes with opsin. pH titrations suggested that an equilibrium exists between partially active (protonated) and inactive (deprotonated) forms of opsin. These findings are consistent with a model in which protonation of one or more cytoplasmic carboxyl groups of opsin is essential for activity. Upon addition of retinoids, the partially active conformation of opsin is converted to a more active intermediate similar to metarhodopsin II b. The model provides an understanding of the structural requirements for opsin activation and an interpretation of the observed activities of natural and experimental opsin mutants.


Vision Research | 1984

Properties and immunocytochemical localization of three retinoid-binding proteins from bovine retina.

John C. Saari; Ann H. Bunt-Milam; D. Lucille Bredberg; Gregory G. Garwin

Cellular retinal-binding protein (CRALBP) complexed with 11-cis-retinal has several properties characteristic of a visual pigment. Interaction of the protein and retinoid results in a bathochromic shift in the absorption spectrum of the chromophore from 380 to 425 nm, accompanied by a decrease in the extinction coefficient (25,000-15,000 M-1 cm-1). Illumination of the complex results in the progressive loss of absorbance at 425 nm and an increase at 375 nm, consistent with the production of a geometrical isomer of retinal that lacks affinity for the binding protein. Analysis by HPLC of the retinoids after illumination reveals that the basis of the spectral transition is a photoisomerization of 11-cis-retinal to all-trans-retinal. Only small amounts (less than 10%) of 13-cis-retinal are produced during the photoisomerization, showing the stereospecificity of the process. Although CRALBP has the spectral characteristics of a blue-sensitive visual pigment, there is no evidence that this is related to its function. This protein may serve as a model for the interactions of 11-cis-retinal and protein. Eleven-cis-retinol bound to CRALBP is a better substrate for esterification by microsomes from retinal pigment epithelium (RPE) than all-trans-retinol bound to cellular retinol-binding protein (CRBP). The product of the reaction, retinyl ester, does not remain bound to either binding protein but becomes associated with the microsomal fraction. Esterification is the first described process, occurring in the dark, by which retinoids can be removed from CRBP and CRALBP. Antibodies to bovine CRBP have been produced in rabbits following injection of the performic acid-oxidized protein.(ABSTRACT TRUNCATED AT 250 WORDS)


Current Opinion in Neurobiology | 1997

Activation and inactivation steps in the visual transduction pathway

Krzysztof Palczewski; John C. Saari

Recent genetic, biochemical and electrophysiological evidence has provided insights into the molecular identity of the substance responsible for bleaching desensitization in vision. Studies examining the molecular defects that cause delayed dark adaptation suggest that the desensitizing substance is recognized by rhodopsin kinase and/or arrestin and, therefore, is probably a complex comprising all-trans-retinal and opsin.


Journal of Neurocytology | 1990

Immunolocalization of cellular retinol-, retinaldehyde- and retinoic acid-binding proteins in rat retina during pre- and postnatal development.

A. M. De Leeuw; Vinod P. Gaur; John C. Saari; Ann H. Milam

SummaryCellular retinol-, retinaldehyde- and retinoic acid-binding proteins were localized in rat retina during pre- and postnatal development by indirect immunofluorescence. Cryostat tissue sections were prepared daily from embryonic day 11 until the day of birth (E11–22) and from postnatal days 1–32 (P1–32). Cellular retinaldehyde- and retinol-binding proteins were first detected in retinal pigment epithelium on E13 and E18, respectively, and in Müller cells at P1 and P15. Parallel studies showed that in adult retina cellular retinoic acid-binding protein is present in a subpopulation of GABAergic amacrine cells. During retinal differentiation, cellular retinoic acid-binding protein was first detected at E18 in cells sclerad to the developing inner plexiform layer, suggesting that this binding protein is expressed in amacrine cells very early during differentiation. During early ocular morphogenesis, cellular retinoic acid-binding protein was present in mesenchymal cells enveloping the eye (E12–15), in the neuroblastic layer of the retina (E13–15), in the nerve fibre layer (E14–15), and the developing optic nerve (E15). Our results suggest that retinoic acid, the natural ligand of cellular retinoic acid-binding protein, may be involved in neuronal differentiation in the inner retina. The studies further support a role for cellular retinoic acid-binding protein in mediating the effects of retinoic acid on developing neural crest cells and raise new questions about the role of cellular retinaldehyde-binding protein in the visual cycle and during development.


The Journal of Neuroscience | 2007

Subunit Dissociation and Diffusion Determine the Subcellular Localization of Rod and Cone Transducins

Derek H. Rosenzweig; K. Saidas Nair; J. Wei; Qiang Wang; Greg Garwin; John C. Saari; Ching-Kang Chen; Alan V. Smrcka; Anand Swaroop; Janis Lem; James B. Hurley; Vladlen Z. Slepak

Activation of rod photoreceptors by light induces a massive redistribution of the heterotrimeric G-protein transducin. In darkness, transducin is sequestered within the membrane-enriched outer segments of the rod cell. In light, it disperses throughout the entire neuron. We show here that redistribution of rod transducin by light requires activation, but it does not require ATP. This observation rules out participation of molecular motors in the redistribution process. In contrast to the light-stimulated redistribution of rod transducin in rods, cone transducin in cones does not redistribute during activation. Remarkably, when cone transducin is expressed in rods, it does undergo light-stimulated redistribution. We show here that the difference in subcellular localization of activated rod and cone G-proteins correlates with their affinity for membranes. Activated rod transducin releases from membranes, whereas activated cone transducin remains bound to membranes. A synthetic peptide that dissociates G-protein complexes independently of activation facilitates dispersion of both rod and cone transducins within the cells. This peptide also facilitates detachment of both G-proteins from the membranes. Together, these results show that it is the dissociation state of transducin that determines its localization in photoreceptors. When rod transducin is stimulated, its subunits dissociate, leave outer segment membranes, and equilibrate throughout the cell. Cone transducin subunits do not dissociate during activation and remain sequestered within the outer segment. These findings indicate that the subunits of some heterotrimeric G-proteins remain associated during activation in their native environments.

Collaboration


Dive into the John C. Saari's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maria Nawrot

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ann H. Milam

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Krzysztof Palczewski

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jing Huang

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge