Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karen A. West is active.

Publication


Featured researches published by Karen A. West.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Proteomic method identifies proteins nitrated in vivo during inflammatory challenge.

Kulwant S. Aulak; Masaru Miyagi; Lin Yan; Karen A. West; Duna Massillon; John W. Crabb; Dennis J. Stuehr

Inflammation in asthma, sepsis, transplant rejection, and many neurodegenerative diseases associates an up-regulation of NO synthesis with increased protein nitration at tyrosine. Nitration can cause protein dysfunction and is implicated in pathogenesis, but few proteins that appear nitrated in vivo have been identified. To understand how this modification impacts physiology and disease, we used a proteomic approach toward targets of protein nitration in both in vivo and cell culture inflammatory disease models. This approach identified more than 40 nitrotyrosine-immunopositive proteins, including 30 not previously identified, that became modified as a consequence of the inflammatory response. These targets include proteins involved in oxidative stress, apoptosis, ATP production, and other metabolic functions. Our approach provides a means toward obtaining a comprehensive view of the nitroproteome and promises to broaden understanding of how NO regulates cellular processes.


Molecular & Cellular Proteomics | 2002

Evidence That Light Modulates Protein Nitration in Rat Retina

Masaru Miyagi; Hirokazu Sakaguchi; Ruth M. Darrow; Lin Yan; Karen A. West; Kulwant S. Aulak; Dennis J. Stuehr; Joe G. Hollyfield; Daniel T. Organisciak; John W. Crabb

As part of ongoing efforts to better understand the role of protein oxidative modifications in retinal pathology, protein nitration in retina has been compared between rats exposed to damaging light or maintained in the dark. In the course of the research, Western methodology for detecting nitrotyrosine-containing proteins has been improved by incorporating chemical reduction of nitrotyrosine to aminotyrosine, allowing specific and nonspecific nitrotyrosine immunoreactivity to be distinguished. A liquid chromatography MS/MS detection strategy was used that selects all possible nitrotyrosine peptides for MS/MS based on knowing the protein identity. Quantitative liquid chromatography MS/MS analyses with tetranitromethane-modified albumin demonstrated the approach capable of identifying sites of tyrosine nitration with detection limits of 4–33 fmol. Using two-dimensional gel electrophoresis, Western detection, and mass spectrometric analyses, several different nitrotyrosine-immunoreactive proteins were identified in light-exposed rat retina compared with those maintained in the dark. Immunocytochemical analyses of retina revealed that rats reared in darkness exhibited more nitrotyrosine immunoreactivity in the photoreceptor outer segments. After intense light exposure, immunoreactivity decreased in the outer segments and increased in the photoreceptor inner segments and retinal pigment epithelium. These results suggest that light modulates retinal protein nitration in vivo and that nitration may participate in the biochemical sequela leading to light-induced photoreceptor cell death. Furthermore, the identification of nitrotyrosine-containing proteins from rats maintained in the dark, under non-pathological conditions, provides the first evidence of a possible role for protein nitration in normal retinal physiology.


Protein Science | 2002

Hydroxynonenal inactivates cathepsin B by forming Michael adducts with active site residues

John W. Crabb; June O'Neil; Masaru Miyagi; Karen A. West; Henry F. Hoff

Oxidation of plasma low‐density lipoprotein (oxLDL) generates the lipid peroxidation product 4‐hydroxy‐2 nonenal (HNE) and also reduces proteolytic degradation of oxLDL and other proteins internalized by mouse peritoneal macrophages in culture. This leads to accumulation of undegraded material in lysosomes and formation of ceroid, a component of foam cells in atherosclerotic lesions. To explore the possibility that HNE contributes directly to the inactivation of proteases, structure‐function studies of the lysosomal protease cathepsin B have been pursued. We found that treatment of mouse macrophages with HNE reduces degradation of internalized maleyl bovine serine albumin and cathepsin B activity. Purified bovine cathepsin B treated briefly with 15 μM HNE lost ∼76% of its protease activity and also developed immunoreactivity with antibodies to HNE adducts in Western blot analysis. After stabilization of the potential Michael adducts by sodium borohydride reduction, modified amino acids were localized within the bovine cathepsin B protein structure by mass spectrometric analysis of tryptic peptides. Michael adducts were identified by tandem mass spectrometry at cathepsin B active site residues Cys 29 (mature A chain) and His 150 (mature B chain). Thus, covalent interaction between HNE and critical active site residues inactivates cathepsin B. These results support the hypothesis that the accumulation of undegraded macromolecules in lysosomes after oxidative damage are caused in part by direct protease inactivation by adduct formation with lipid peroxidation products such as HNE.


Molecular & Cellular Proteomics | 2003

Protein Database, Human Retinal Pigment Epithelium

Karen A. West; Lin Yan; K.G. Shadrach; J. Sun; Azeem Hasan; Masaru Miyagi; John S. Crabb; Joe G. Hollyfield; Alan D. Marmorstein; John W. Crabb

The retinal pigment epithelium (RPE) is a single cell layer adjacent to the rod and cone photoreceptors that plays key roles in retinal physiology and the biochemistry of vision. RPE cells were isolated from normal adult human donor eyes, subcellular fractions were prepared, and proteins were fractionated by electrophoresis. Following in-gel proteolysis, proteins were identified by peptide sequencing using liquid chromatography tandem electrospray mass spectrometry and/or by peptide mass mapping using matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Preliminary analyses have identified 278 proteins and provide a starting point for building a database of the human RPE proteome.


Journal of Biological Chemistry | 2003

Disease-causing mutations in the cellular retinaldehyde binding protein tighten and abolish ligand interactions

Irina Golovleva; Sanjoy K. Bhattacharya; Zhiping Wu; Natacha Shaw; Yanwu Yang; Khurshid Iqbal Andrabi; Karen A. West; Marie Burstedt; Kristina Forsman; Gösta Holmgren; A. Ola Sandgren; Noa Noy; Jun Qin; John W. Crabb

Mutations in the human cellular retinaldehyde binding protein (CRALBP) gene cause retinal pathology. To understand the molecular basis of impaired CRALBP function, we have characterized human recombinant CRALBP containing the disease causing mutations R233W or M225K. Protein structures were verified by amino acid analysis and mass spectrometry, retinoid binding properties were evaluated by UV-visible and fluorescence spectroscopy and substrate carrier functions were assayed for recombinant 11-cis-retinol dehydrogenase (rRDH5). The M225K mutant was less soluble than the R233W mutant and lacked retinoid binding capability and substrate carrier function. In contrast, the R233W mutant exhibited solubility comparable to wild type rCRALBP and bound stoichiometric amounts of 11-cis- and 9-cis-retinal with at least 2-fold higher affinity than wild type rCRALBP. Holo-R233W significantly decreased the apparent affinity of rRDH5 for 11-cis-retinoid relative to wild type rCRALBP. Analyses by heteronuclear single quantum correlation NMR demonstrated that the R233W protein exhibits a different conformation than wild type rCRALBP, including a different retinoid-binding pocket conformation. The R233W mutant also undergoes less extensive structural changes upon photoisomerization of bound ligand, suggesting a more constrained structure than that of the wild type protein. Overall, the results show that the M225K mutation abolishes and the R233W mutation tightens retinoid binding and both impair CRALBP function in the visual cycle as an 11-cis-retinol acceptor and as a substrate carrier.


Molecular & Cellular Proteomics | 2004

Proteomic Characterization of Isolated Retinal Pigment Epithelium Microvilli

Vera L. Bonilha; Sanjoy K. Bhattacharya; Karen A. West; J. Sun; John W. Crabb; Mary E. Rayborn; Joe G. Hollyfield

Polarized epithelial cells are characterized by displaying compartmentalized functions associated with differential distribution of transporters, structural proteins, and signaling molecules on their apical and basolateral surfaces. Their apical surfaces frequently elaborate microvilli, which vary in structure according to the specific type and function of each epithelium. The molecular basis of this heterogeneity is poorly understood. However, differences in function will undoubtedly be reflected in the specific molecular composition of the apical surface in each epithelial subtype. We have exploited a method for isolating microvilli from the mouse eye using wheat germ agglutinin (WGA)-agarose beads to begin to understand the specific molecular composition of apical microvilli of the retinal pigment epithelium (RPE) and expand our knowledge of the potential function of this interface. Initially, apical RPE plasma membranes bound to WGA beads were processed for morphological analysis using known apical and basolateral surface markers. The protein composition of the apical microvilli was then established using proteomic analysis. Over 200 proteins were identified, including a number of proteins previously known to be localized to RPE microvilli, as well as others not known to be present at this surface. Localization of novel proteins identified with proteomics was confirmed by immunohistochemistry in both mouse and rat eye tissue. The data generated provides new information on the protein composition of the RPE apical microvilli. The isolation technique used should be amenable for isolating microvilli in other epithelia as well, allowing new insights into additional functions of this important epithelial compartment.


Journal of Biological Chemistry | 2003

Mapping the ligand binding pocket in the cellular retinaldehyde binding protein.

Zhiping Wu; Yanwu Yang; Natacha Shaw; Sanjoy K. Bhattacharya; Lin Yan; Karen A. West; Karen Roth; Noa Noy; Jun Qin; John W. Crabb

Retinoid interactions determine the function of the cellular retinaldehyde binding protein (CRALBP) in the rod visual cycle where it serves as an 11-cis-retinol acceptor for the enzymatic isomerization of all-trans- to 11-cis-retinol and as a substrate carrier for 11-cis-retinol dehydrogenase (RDH5). Based on preliminary NMR studies suggesting retinoid interactions with Met and Trp residues, human recombinant CRALBP (rCRALBP) with altered Met or Trp were produced and analyzed for ligand interactions. The primary structures of the purified proteins were verified for mutants M208A, M222A, M225A, W165F, and W244F, then retinoid binding properties and substrate carrier functions were evaluated. All the mutant proteins bound 11-cis- and 9-cis-retinal and therefore were not grossly misfolded. Altered UV-visible spectra and lower retinoid binding affinities were observed for the mutants, supporting modified ligand interactions. Altered kinetic parameters were observed for RDH5 oxidation of 11-cis-retinol bound to rCRALBP mutants M222A, M225A, and W244F, supporting impaired substrate carrier function. Heteronuclear single quantum correlation NMR analyses confirmed localized structural changes upon photoisomerization of rCRALBP-bound 11-cis-retinal and demonstrated ligand-dependent conformational changes for residues Met-208, Met-222, Trp-165, and Trp-244. Furthermore, residues Met-208, Met-222, Met-225, and Trp-244 are within a region exhibiting high homology to the ligand binding cavity of phosphatidylinositol transfer protein. Overall the data implicate Trp-165, Met-208, Met-222, Met-225, and Trp-244 as components of the CRALBP ligand binding cavity.


Proceedings of the National Academy of Sciences of the United States of America | 1999

Pseudechetoxin: A peptide blocker of cyclic nucleotide-gated ion channels

R. Lane Brown; Tammie L. Haley; Karen A. West; John W. Crabb


Biochemistry | 2003

Enhancement of chaperone function of α-crystallin by methylglyoxal modification

Ram H. Nagaraj; Tomoko Oya-Ito; Pius S. Padayatti; Radhika Kumar; Sachin Mehta; Karen A. West; Bruce S. Levison; J. Sun; John W. Crabb; A.K. Padival


Experimental Eye Research | 2005

Proteomic analysis of vitreous from diabetic macular edema.

Masayuki Ouchi; Karen A. West; John W. Crabb; Shigeru Kinoshita; Motohiro Kamei

Collaboration


Dive into the Karen A. West's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John C. Saari

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maria Nawrot

University of Washington

View shared research outputs
Researchain Logo
Decentralizing Knowledge