Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John Colucci is active.

Publication


Featured researches published by John Colucci.


British Journal of Pharmacology | 2004

Neuroprotective effects of M826, a reversible caspase-3 inhibitor, in the rat malonate model of Huntington's disease

Sylvie Toulmond; Keith Tang; Yves Bureau; Helen Ashdown; Sarah Degen; Ruth O'Donnell; John Tam; Yongxin Han; John Colucci; André Giroux; Yanxia Zhu; Mathieu Boucher; Bill Pikounis; Steven Xanthoudakis; Sophie Roy; Michael Rigby; Robert Zamboni; George S. Robertson; Gordon Y. K. Ng; Donald W. Nicholson; Jean-Pierre Flückiger

Caspases, key enzymes in the apoptosis pathway, have been detected in the brain of HD patients and in animal models of the disease. In the present study, we investigated the neuroprotective properties of a new, reversible, caspase‐3‐specific inhibitor, M826 (3‐({(2S)‐2‐[5‐tert‐butyl‐3‐{[(4‐methyl‐1,2,5‐oxadiazol‐3‐yl)methyl]amino}‐2‐oxopyrazin‐1(2H)‐yl]butanoyl}amino)‐5‐[hexyl(methyl)amino]‐4‐oxopentanoic acid), in a rat malonate model of HD. Pharmacokinetic and autoradiography studies after intrastriatal (i.str.) injection of 1.5 nmol of M826 or its tritiated analogue [3H]M826 indicated that the compound diffused within the entire striatum. The elimination half‐life (T1/2) of M826 in the rat striatum was 3 h. I.str. injection of 1.5 nmol of M826 10 min after malonate infusion induced a significant reduction (66%) in the number of neurones expressing active caspase‐3 in the ipsilateral striatum. Inhibition of active caspase‐3 translated into a significant but moderate reduction (39%) of the lesion volume, and of cell death (24%), 24 h after injury. The efficacy of M826 at inhibiting cell death was comparable to that of the noncompetitive NMDA receptor antagonist MK801. These data provide in vivo proof‐of‐concept of the neuroprotective effects of reversible caspase‐3 inhibitors in a model of malonate‐induced striatal injury in the adult rat.


Bioorganic & Medicinal Chemistry Letters | 2008

Discovery of [(3-bromo-7-cyano-2-naphthyl)(difluoro)methyl]phosphonic acid, a potent and orally active small molecule PTP1B inhibitor

Yongxin Han; Michel Belley; Christopher I. Bayly; John Colucci; Claude Dufresne; André Giroux; Cheuk K. Lau; Yves Leblanc; Daniel J. McKay; Michel Therien; Marie-Claire Wilson; Kathryn Skorey; Chi-Chung Chan; Giovana Scapin; Brian P. Kennedy

A series of quinoline/naphthalene-difluoromethylphosphonates were prepared and were found to be potent PTP1B inhibitors. Most of these compounds bearing polar functionalities or large lipophilic residues did not show appreciable oral bioavailability in rodents while small and less polar analogs displayed moderate to good oral bioavailability. The title compound was found to have the best overall potency and pharmacokinetic profile and was found to be efficacious in animal models of diabetes and cancer.


Bioorganic & Medicinal Chemistry Letters | 2011

Discovery of MK-7246, a selective CRTH2 antagonist for the treatment of respiratory diseases

Michel Gallant; Christian Beaulieu; Carl Berthelette; John Colucci; Michael A. Crackower; Chad Dalton; Danielle Denis; Yves Ducharme; Richard W. Friesen; Daniel Guay; François G. Gervais; Martine Hamel; Robert Houle; Connie M. Krawczyk; Birgit Kosjek; Stephen Lau; Yves Leblanc; Ernest E. Lee; Jean-François Lévesque; Christophe Mellon; Carmela Molinaro; Wayne Mullet; Gary O’Neill; Paul D. O’Shea; Nicole Sawyer; Susan Sillaots; Daniel Simard; Deborah Slipetz; Rino Stocco; Dan Sørensen

In this manuscript we wish to report the discovery of MK-7246 (4), a potent and selective CRTH2 (DP2) antagonist. SAR studies leading to MK-7246 along with two synthetic sequences enabling the preparation of this novel class of CRTH2 antagonist are reported. Finally, the pharmacokinetic and metabolic profile of MK-7246 is disclosed.


Bioorganic & Medicinal Chemistry Letters | 2010

Discovery of 4-[1-[([1-[4-(trifluoromethyl)benzyl]-1H-indol-7-yl]carbonyl)amino]cyclopropyl]benzoic acid (MF-766), a highly potent and selective EP4 antagonist for treating inflammatory pain.

John Colucci; Michael Boyd; Carl Berthelette; Jean-François Chiasson; Zhaoyin Wang; Yves Ducharme; Rick Friesen; Mark Wrona; Jean-François Lévesque; Danielle Denis; Marie-Claude Mathieu; Rino Stocco; Alex G. Therien; Patsy Clarke; Steve Rowland; Daigen Xu; Yongxin Han

The discovery of a highly potent and selective EP(4) antagonist MF-766 is discussed. This N-benzyl indole derivative exhibits good pharmacokinetic profile and unprecedented in vivo potency in the rat AIA model.


Journal of Biological Chemistry | 2004

A Caspase Active Site Probe Reveals High Fractional Inhibition Needed to Block DNA Fragmentation

Nathalie Méthot; John P. Vaillancourt; JingQi Huang; John Colucci; Yongxin Han; Stéphane Ménard; Robert Zamboni; Sylvie Toulmond; Donald W. Nicholson; Sophie Roy

Apoptotic markers consist of either caspase substrate cleavage products or phenotypic changes that manifest themselves as a consequence of caspase-mediated substrate cleavage. We have shown recently that pharmacological inhibitors of caspase activity prevent the appearance of two such apoptotic manifestations, αII-spectrin cleavage and DNA fragmentation, but that blockade of the latter required a significantly higher concentration of inhibitor. We investigated this phenomenon through the use of a novel radiolabeled caspase inhibitor, [125I]M808, which acts as a caspase active site probe. [125I]M808 bound to active caspases irreversibly and with high sensitivity in apoptotic cell extracts, in tissue extracts from several commonly used animal models of cellular injury, and in living cells. Moreover, [125I]M808 detected active caspases in septic mice when injected intravenously. Using this caspase probe, an active site occupancy assay was developed and used to measure the fractional inhibition required to block apoptosis-induced DNA fragmentation. In thymocytes, occupancy of up to 40% of caspase active sites had no effect on DNA fragmentation, whereas inhibition of half of the DNA cleaving activity required between 65 and 75% of active site occupancy. These results suggest that a high and persistent fractional inhibition will be required for successful caspase inhibition-based therapies.


Bioorganic & Medicinal Chemistry Letters | 2008

Structure–activity relationships and pharmacokinetic parameters of quinoline acylsulfonamides as potent and selective antagonists of the EP4 receptor

Jason Burch; Michel Belley; Rejean Fortin; Denis Deschenes; Mario Girard; John Colucci; Julie Farand; Alex G. Therien; Marie-Claude Mathieu; Danielle Denis; Erika Vigneault; Jean-François Lévesque; Sébastien Gagné; Mark Wrona; Daigen Xu; Patsy Clark; Steve Rowland; Yongxin Han

A new series of EP(4) antagonists based on a quinoline acylsulfonamide scaffold have been identified as part of our on-going efforts to develop treatments for chronic inflammation. These compounds show subnanomolar intrinsic binding potency towards the EP(4) receptor, and excellent selectivity towards other prostanoid receptors. Acceptable pharmacokinetic profiles have also been demonstrated across a series of preclinical species.


Bioorganic & Medicinal Chemistry Letters | 2011

A novel series of potent and selective EP4 receptor ligands: Facile modulation of agonism and antagonism

Michael Boyd; Carl Berthelette; Jean-François Chiasson; Patsy Clark; John Colucci; Danielle Denis; Yongxin Han; Jean-François Lévesque; Marie-Claude Mathieu; Rino Stocco; Alex G. Therien; Steve Rowland; Mark Wrona; Daigen Xu

A novel series of EP(4) ligands, based on a benzyl indoline scaffold, has been discovered. It was found that agonism and antagonism in this series can be easily modulated by minor modifications on the benzyl group. The pharmacokinetic, metabolic and pharmacological profiles of these compounds was explored. It was found that these compounds show good pharmacokinetics in rat and are efficacious in pre-clinical models of pain and inflammation.


Bioorganic & Medicinal Chemistry Letters | 2011

New indole amide derivatives as potent CRTH2 receptor antagonists.

Helmi Zaghdane; Michael Boyd; John Colucci; Daniel Simard; Carl Berthelette; Yves Leblanc; Zhaoyin Wang; Robert Houle; Jean François Lévesque; Carmela Molinaro; Martine Hamel; Rino Stocco; Nicole Sawyer; Susan Sillaots; François G. Gervais; Michel Gallant

A new series of indole amide acting as hCRTH2 receptor ligands had been explored and are described herein. Several amide derivatives displaying low nanomolar activity in hCRTH2 binding and whole blood assays were identified. They were found to behave as a full antagonists, exhibiting good selectivity over related prostaglandin receptors. Also, prototypical compounds in this novel series which displayed acceptable CYP profiles and were orally bioavailable in rats were identified.


Bioorganic & Medicinal Chemistry Letters | 2011

Naphthalene/quinoline amides and sulfonylureas as potent and selective antagonists of the EP4 receptor.

Jason Burch; Julie Farand; John Colucci; Claudio Sturino; Yves Ducharme; Richard W. Friesen; Jean-François Lévesque; Sébastien Gagné; Mark Wrona; Alex G. Therien; Marie-Claude Mathieu; Danielle Denis; Erika Vigneault; Daigen Xu; Patsy Clark; Steve Rowland; Yongxin Han

Two new series of EP(4) antagonists based on naphthalene/quinoline scaffolds have been identified as part of our on-going efforts to develop treatments for inflammatory pain. One series contains an acidic sulfonylurea pharmacophore, whereas the other is a neutral amide. Both series show subnanomolar intrinsic binding potency towards the EP(4) receptor, and excellent selectivity towards other prostanoid receptors. While the amide series generally displays poor pharmacokinetic parameters, the sulfonylureas exhibit greatly improved profile. MF-592, the optimal compound from the sulfonylurea series, has a desirable overall preclinical profile that suggests it is suitable for further development.


Archive | 2006

EP4 Receptor Agonist, Compositions and Methods Thereof

Xavier Billot; John Colucci; Yongxin Han; Marie-Claire Wilson; Robert N. Young

Collaboration


Dive into the John Colucci's collaboration.

Researchain Logo
Decentralizing Knowledge